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U INTRODUCTION

1.1 Summary

This report details results of research performed under AFOSR contract no. F49620-86-
K-0016. The contract was initiated on June 1, 1986 and expired on December 31, 1989.

Aerospace vehicles are often subjected to hostile thermal environments capable of
adversely affecting their life. Examples are: 1) space structures subjected to solar radiation or
other external heating sources, as well as onboard heating; 2) structural components subjected
to laser heating; and 3) aerodynamic vehicles in hypersonic flight. The structural materials
utilized in these applications may be metallic superalloys, metal matrix composites, or even
ceramic composites. All of these materials undergo substantial material inelasticity at elevated
temperatures. In order to accurately predict the thermomechanical response of structural
components composed of these materials, it is imperative to develop accurate constitutive models
capable of accounting for material nonlinearity in the presence of cyclic load and transient
temperature conditions. These models must be capable of accurately accounting for temperature
and history dependent constitutive properties, as well as two-way thermomechanical coupling
via modified heat conduction equations which are material specific. In addition, these media
may undergo extremely rapid heating rates due to the presence of large external heat sources.
Although models are currently available for some of these materials at elevated temperature,
little has been done to extend these theories to transient temperature conditions such as those
encountered in the three examples cited above.

The general objective of this research is to improve on existing theoretical models for
predicting the response of inelastic aerospace structural components subjected to hostile thermal
environments with emphasis on transient temperature conditions, radiation boundary conditions,
extremely rapid heating rates. and possible phase change of the materials involved. For
materials subjected to the conditions under study herein it is necessary to perform extremely
complex experiments in order to determine the precise form of the theoretical constitutive
equations. Finally, it is necessary to implement the resulting equations to boundary value
problem solving algorithms in order to model the response of structural components with stress,
strain, and temperature gradient fields.

* 1.2 Statement of Work

Experimental and theoretical research were performed to characterize the response of
structural components subjected to transient temperature conditions resulting in inelastic material
behavior. The research was performed in the following stages:

1 1) theoretical development of thermodynamic constraints on inelastic materials under transient
temperature conditions;I

I
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I 2) development of modified heat conduction equations to account for two-way thermomechanical
coupling in these inelastic materials;

3) experimentation to determine further constraints on inelastic materials under transient
temperature conditions;

4) development of multi-dimensional theoretical algorithms for predicting response of the
inelastic structural components described above; and

5) experimentation to verify the theoretical algorithms described in item 4).

Items 1) through 4) above were performed entirely on the main campus at Texas A&M
University. Item 5) was performed both at the Air Force Wright Aeronautics Laboratory at
Wright Patterson Air Force Base and Texas A&M University. Details of this research will be
described further below.

RESEARCH COMPLETED

2.1 Summary of Completed Research

The results of the three year program are as summarized below:

1) a one-way coupled model was developed for the thermoviscoplastic plate subjected to
rapid laser heating (see references 1 and 2);

2) thermodynamic constraints were developed for the thermoviscoplastic medium studied
herein (see reference 2);

3) a two-way coupled model was also developed for the thermoviscoplastic plate
subjected to rapid laser heating (see Appendix 7.1);

4) a thermoviscoplastic constitutive model was developed for short fiber composites ( see
Appendix 7.2);

3 5) a model for determining the effects of certain forming processes on short fiber
composites was constructed (see Appendix 7.3);

6) constitutive testing and model development were performed to determine the
thermoviscoplastic constitutive behavior of Hastelloy X (see Appendix 7.4); and

7) structural tests were performed on Hastelloy X plates in the LHMEL laboratory at
WPAFB (see reference 2).

*2
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I Items 1,2 and 7 above have been previously documented in the first and second annual
reports [1,2]. Items 3 through 6 are detailed in the Appendix of this report. These items are
summarized in the following sections.

I 2.2 Theoretical Developments

Theoretical results obtained during the course of the contract are discussed below.

2.2.1 One-Way Coupled Model

A solution algorithm has been developed by the authors for modeling the transient
response of a thin metallic plate with viscoplastic constitution subjected to rapid external heating.
The model assumes one-way coupling in the sense that the heat transfer solution is assumed to
be independent of deformations, whereas the mechanical response depends on the temperature
field. In addition to radiation boundary conditions and material inelasticity, geometric
nonlinearity has been included. A nonlinear incremental formulation for an anisotropic plate has
been developed using variational methods and finite element discretization. The algorithm
utilizes constitutive models for viscoplastic media previously proposed by Bodner and Partom
[3] and Walker [4]. The model results are briefly reviewed in this section. Further details can
be found in references 1 and 2.

The solution algorithm is constructed in two stages: the thermal analysis and the
structural analysis. The general flowchart is shown in Fig. 1. On a given time step, the thermal
loads are evaluated. Then the temperature field is solved by the finite element method.
Together with the inelastic strain increment evaluated from the previous time step, the thermal
strain results in an unbalanced load with which the deformation is approximated. Iteration willbring the solution to equilibrium for a given time step. Due to the induced high in-plane
stresses, it is necessary to update the effective stiffness matrix in the iterative procedure.

I To demonstrate the use of this model, an isotropic circular plate with fixed plate
boundary and radius r= 10 in is selected. The material used is B1900+Hf, which is a nickel-
based superalloy commonly used in hot gas turbines. The plate is subjected to an instantaneous
constant heat input applied axisymmetrically about the cente, of the plate with radius 0.5 in.
The thermal boundary conditions are radiation type with reference temperature TR=00 F. The3 finite element mesh diagrams for the thermal and structural analyses are shown in Fig. 2.

Figure 3 shows the history of plate center deflection for cases with and without geometric
nonlinearity. Considering the in-plane stresses, the transverse deflection is significantly
decreased, which demonstrates the importance of including geometric nonlinearity in this model.
Figures 4 through 8 are the results for cases which include geometric effects and the
viscoplasticity models. Figure 4 shows the deflection history of the plate center. When the

* 3I
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H inelastic material response is considered, the deflection of the plate upper surface is reduced.
Figure 5 shows the stress history at r=0.11 in of the plate upper surface. The stress is
significantly reduced by the accumulated inelastic strain. Figure 6 shows the radial stress history
predicted by Walker's model at various positions of the plate upper surface. Figures 7 and 8
show the radial stress and hoop stress distribution at time t=0.01 sec. Figure 9 shows the in-
plane deformation and Fig. 10 shows the accumulated inelastic strain at time=0.01 sec.
Walker's model tends to accumulate more inelastic response than Bodner and Partom's, which
in turn predicts lower stresses.

Figures 11 through 13 show the results for plates with varying thickness and identical
external heating. Figure 11 shows the radial stress at r=0. 11 in of the plate upper surface for
various plate thicknesses. Figure 13 shows the accumulated inelastic strain at time t=0.01 sec
for varying plate thickness. Figures 14 through 16 show the results for a plate with fixed
thickness and various external heating rates. Figure 14 shows that with greater external heating,
larger deflection is predicted. Figure 15 shows the stress history at r=0.11 in. Higher
compressive peak stress is induced and more inelastic strain is accumulated with greater external
heating. Figure 16 shows the stress distribution at time t=0.01 sec for different external heating
rates. Further details about the one-way coupled model can be found in references 1 and 2.

12.2.2 Two-Way Coupled Model

Whereas the one-way coupled model assumes that the strains do not affect the
temperature, the two-way coupled model assumes that this effect cannot be neglected. As shown
in Appendix 7.5, the resulting heat conduction equation for an isotropic thermoviscoplastic

* medium is given by:

kT,,=pCv + pi + (3 +2)PT0- - VA Y(1)

where the last term is due to inelastic coupling, and the term before it accounts for elastic
coupling. These coupling terms introduce significant complexity into any solution procedure,
since the heat transfer solution can no longer be solved a priori and substituted into the
mechanical field equations. This procedure used herein was to first reduce the equations to the
case of an axisymmetric continuum (not a plate), so that the governing equations are two-
dimensional as described in Appendix 7.1. The governing equations were cast in a weak
variational form and discretized using the finite element method. Solutions were obtained using
four node quads. The computer code is available from the authors on request.

Several examples were solved for a circular plate similar to that studied in the previous
section. The material was assumed to obey the Bodner-Partom viscoplasticity model [3]. As
noted in the appendix, both mesh and time step were optimized to obtain converged results. All
results were obtained for a plate of 10 cm radius with a laser spot of 2 cm radius centered at the
plate center. The laser input was 2.5 x 10 Btu/m2, with a duration of 0.02 sec. Results have
been plotted for the in-plane and out-of-plane displacement components at the center of the plate

I9
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as functions of time. The first result shows the results obtained assuming one-way coupling and
thermoelastic material behavior (see Fig. 17). Note that the in-plane component oscillates at
about 140 Hz, while the out-of-plane component responds much more slowly.

Fig. 18 compares one-way coupled predictions for the in-plane displacement at the plate
center both with and without viscoplasticity included. Note that the inclusion of inelasticity
causes effective damping which decreases the amplitude of vibration. Of course, the result is
very similar to that obtained in the previous section, as should be expected.

In order to test the effect of the assumption that the heat input is instantaneous, the input
was changed to a linear ramp over the first 20 msec, then constant for 80 msec, and then
abruptly turned off. as shown in Fig. 19, the results are quite different from the instantaneous
results, with the in-plane displacement oscillating at a much slower frequency until the heat
source is turned off. Thereafter, a higher frequency response is observed, similar to the results
for the instantaneous input solutions. Note that the residual oscillations are centered about a
non-zero (compressive) mean, indicating the presence of a residual viscoplastic deformation.

I The final result is for the case where full two-way coupling is assumed. As shown in
Fig. 20, the results for the one-way and two-way analyses coupled analysis are almost
indistinguishable. We attempted without success to induce more substantial differences by
sweeping over the input variables. In all cases the differences were insignificant. At this point
in time we feel that this is due to the fact that the viscoplastic response is restricted to a very
small zone near the plate center and is essentially nonoscillatory in nature. It is our belief that
significant two-way coupling could only be introduced by oscillating the heat input, thus
producing oscillatory inelastic deformations which would result in more substantial hysteresis.

U The following is a summary of the results which we have observed after solving the
three-dimensional, axisymmetric, fully coupled, thermoviscoplastic equations for a laser heated

* thin plate.

1. If the heat impulse is of sufficiently short duration, and very localized near the center
of the plate, the fundamental response is that of an elastic plate under a point load. This
is true under both stress-free and clamped boundary conditions.

2. If the heat impulse is ramped, a slow oscillation about a deformed state (which would
be given by constant thermal input) is observed. After the heat source is turned off, a
complicated return to a permanently deformed state is observed.

3. The inclusion of inelastic effects in the momentum equations accounts for about a 5-10%
change in out-of-plane displacements.

4. The inclusion of inelastic two-way coupling affects the out-of-plane displacements very
little (less that 2% observed change).

* 14
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I
5. Relatively large grids may be used away from the boundary thermal input. The time

step limitation is primarily due to the rapid thermal heating characteristic time.

6. The following appears to be the approximate ranking of effects in the boundary heated,
no external loading, axisymmetric plate problem:

a) Boundary heating, temperature response can approach 100 degrees Kelvin/sec or
more. The induced thermal stresses and strains.

b) Inelastic corrections to the deformations, and the resultant change in stress.

I c) Two-way thermoelastic coupling.

d) Two-way thermoinelastic coupling. This effect is extremely localized.

Further details about this portion of the research can be found in Appendix 7. 1.I
2.2.3 Damage Dependent Constitutive Model for Metal Matrix Composites

The thermoviscoplastic model developed in the previous sections was intended also for use
with short fiber metal matrix composites. Therefore, it was necessary to develop a composite
constitutive model which accounts for inelasticity in the matrix. This was accomplished by
applying the equivalent inclusion method in conjunction with the Mori-Tanaka method, as
described in detail in Appendix 7.3. The inclusion was assumed to be linear elastic, and the
matrix was assumed to be viscoplastic, according to Miller's model [5].

In order to extend Benveniste's [6] reinterpretation of the elastic version of the Mori-Tanaka
[7] method to viscoplasticity, we relate a history of the two phase self-consistent scheme. The
use of the self-consistent method to predict the "effective", or overall composite stiffness of
elastic-plastic matrices reinforced with elastic inhomogeneities has evolved along two paths - the
"equivalent inclusion method" and the "direct approach." For comprehensive reviews, see Mura
[8] and Hashin [9], respectively. As originally formulated by Eshelby [10] for dilute
concentrations of inhomogeneities, the equivalent inclusion method makes use of the following
"equivalency condition."

I o +o + P (2)ek/- c+ eb eV- C*Xttekd k/. eil-,/ (2)

The reader should note that in the above equation and in the remainder of the paper superscripts
denote a qualitative description of the associated variables, whereas subscripts represent tensorial

components. Thus, in (2) 1 and m denote the elastic stiffness of the inhomogeneity

I19
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and matrix, respectively, ekol is the far-field strain, e. is the strain in the inhomogeneity, et

is the matrix plastic stain, and et is the "equivalent transformation strain," or "eigenstrain."

Eshelby's principal result was that uniform strain fields are produced in an ellipsoidal

inhomogeneity embedded in an infinite matrix under uniform strain et and uniform plasticI
strain ef The method was subsequently extended by Mori and Tanaka [7] by including a

"back stress" analysis which accounts for the mutual interaction between inhomogeneities.
Composite elastic and plastic hardening moduli were obtained from energy principles. The
Mori-Tanaka back stress analysis has, in turn, been extended by Taya and Chou [II] to include
two types of inhomogeneities.

As pointed out by Hill [12] in his self-consistent analysis of polycrystalline plasticity, the
matrix instantaneous stiffness rather than the elastic stiffness, should be used in the solution of
the "auxiliary problem" of a single grain embedded in an elastic-plastic matrix. Following this
recommendation, Tandon and Weng [13] corrected the Mori-Tanaka method by replacing the

elastic stiffness C" in equation (2) with the instantaneous stiffness Lm and removing the

I plastic strain eft from the equation. The resulting equivalency condition in the incremental

form is

C (de + d+ k + dekn) = LiJ-Wde + dCtk + dek, - del) (3)

where ,d, is the increment of the Mori-Tanaka "back strain." We note that the Moi-Tanaka

formulation for an elastic matrix is recovered if the instantaneous stiffness Li s replaced by

the elastic stiffness C "iI
Following Hill [14], we write the "direct approach" to the composite elastic stiffness C€kl

Ias

I
* 20
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(C M( " ( 4 )

IV' Cjk +cI(Cvmin - -m~n) dI
where c' is the reinforcement volume fraction and the brackets denote the orientation average.
The composite elastic stiffness can be obtained following the determination of the orientation
dependent "strain concentration factor", Ai, which gives the average inhomogeneity strain in
terms of the uniform composite strain. The determination of A0 is the essential difficulty in
the micromechanics method. For dilute concentrations of inhomogeneities, the tensor

Adil = T can be obtained from Eshelby [10] asijkJ

TVAI= 1IkI SV.C(C 0opk opkl

where S,, is the Eshelby tensor, and I is the identity tensor. For a non-dilute concentration
of inhomogeneities, the strain concentration tensor should be derived in a manner which takesinto account the particle interaction. Hill [15] obtained such a concentration tensor in his "direct
approach" to the self-consistent scheme for two-phase composites.

IThe Eshelby tensor is a function of the particle aspect ratios and the instantaneous matrix
stiffness. Mura [8] has given single integral equations for the Eshelby tensor corresponding to
the case of a transversely isotropic matrix with its crystalline directions coincident with the
principal directions of a spheroidal inhomogeneity of any aspect ratio. For the case of a
generally orthotropic matrix containing spherical inhomogeneities, Morris [16] has given double
integrals for the Eshelby tensor.

In order to use Mura's integrals for the Eshelby tensor, the inhomogeneities are assumed
to be aligned in the X3 axis. This condition is not overly restrictive, as it allows for the
application of hydrostatic pressure and combined tension/torsion, and triaxial stress states in

which 611 = d22, '33 0 0.

Recently, Benveniste [6] made the remarkable observation that the non-dilute strain
concentration tensor could be obtained from a reexamination of the elastic Mori-Tanaka method
in terms of equations (4) and (5). Benveniste et al. [6] subsequently extended the analysis to
predict the effective elastic stiffness of composites with two types of inhomogeneities. Recall
from equation (3) that the elastic-plastic form of the Mori-Tanaka method is obtained by
replacing the matrix elastic stiffness with the instantaneous stiffness. Therefore, the elastic-

plastic form of the Benveniste et al. [6] method can be written in terms of instantaneous stiffness Lm
ik1

I
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Under an applied uniform strain rate to the composite instantaneous tangent stiffness Li,, is

* given as

L= [ c .rTn " [Fj'T r -1(6)

where r = I denotes the first particle type,
r = 2 denotes the second particle type, and
r = m denotes the matrix phase.

I The average phase strain rates are given by

r r o0iir. = A rjk .k o rfl ,2,...m (7)

* or

i ekl r=1,2 (8)

I .0
whei e the matrix strain rate is written in terms of the applied strain rate 0 as

= T/ r = 1,2,...m (9)

The dilute strain concentration tensors Tir are given in the form

Tr = [I 7 + S r (Lm ) r - m (10)
~jkl zjMn mn opse 0 )1

I r~T = 'I (11)

where the fourth-order unit tensor is defined by

I
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Ik '0-( = + 8U6 Jk) (12)I
Similarly, under an applied traction giving rise to a uniform stress rate 60 the

composite instantaneous compliance M. (=L.-j is given as

,M.. r r W r W~ -1, (3

MU't= [ Cy'M r mno) [* r=1,2,...m (13)I "

with

r. = Br r=l,2,...m (14)

I jkl k1'

or

Ir = r =1.2(15)ij = ijkfld k, r=1,2

I0
where the matrix stress rate is written in terms of the applied stress rate o as

I m l -- k'J, Y'° r-1,2,...m (16)

The dilute stress concentration tensors are

r Lr T r Mm (17)

ijkl ijmn mnop opk" l

I Substitution of equations (9) into (14) results in
m (18)

ijkl qkl

I
For a given composite stress rate &f0, the composite total strain rate 60 follows

from the composite compliance Mij, equation (13). The micromechanics leading to Miju is
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I based on the fact that the composite total strain rate is equal to the volume average of the phase
total strain rates. As pointed out by Hill [17] the elastic and inelastic components of the
composite total strain rate are not direct averages of their microscopic counterparts when the

composite stress rate, 6o maintains inelastic flow in an elastically heterogeneous medium.

IThe composite inelastic strain is typically obtained from an elastic unloading. Because the
unified equations do not allow for regions of purely elastic deformation we will consider only
imaginary "instantaneous" elastic unloading. In other words, we assume that during the
infinitesimal period of unloading static recovery has insufficient time to induce inelastic flow.
With this assumption, we associate with each real state an imaginary elastic state of zero applied
stress. The composite inelastic strain rate is then given by

6°1 = [MV. - (Cut)- 1 (19)

However, the composite inelastic strain rate may be obtained without calculation the composite
compliance. Suquet 118] has given the composite inelastic strain as the volume average of the
product of the phase stress concentration factors and the phase inelastic strains. When inelastic
flow occurs only in the matrix the result is simply

t 01 , c fh.B1iM (20)

N The proof follows from the decomposition of strain and the equivalence of micro and macro
virtual power, also known as Hill's Macrohomogeneity Equality.

The model accounts only for the particle volume fraction and not the individual
particle sizes. We make the implicit assumption that the individual particles "see" a statistically
homogeneous polycrystalline matrix. SiC whiskers of 1-2 4m diameter, however, are embedded
within single grains. Walker and Jordan [19] have developed unified constitutive equations for
single crystals. The inversion of a single crystal equation to the total strain form may be of
limited utility, however, due to the presence of multiple corners on a single crystal SCISR.
Fortunately, continuous fibers of 150,um diameter may be at least one order of magnitude larger
than the surrounding grains [Kim et al. [20]. But the Mori-Tanaka method may have limited
applicability to typical continuous fiber reinforced metal matrix composites, which are often no
more than eight plies thick. In this case, the fiber diameter is of the same order of magnitude
as the composite thickness. The rigorous form of the micromechanics may not then reduce to
the simple common form (see, for instance, Mori and Tanaka [7].

The model presented herein provides the mechanical equation of state for the
composite and the growth law for the composite inelastic strain. The damage state is treated as
known. The Mori-Tanaka method has been used [Taya [21]] to obtain the strain energy release
rates for cracks in elastic composites. The concept of strain energy release rate is of limited
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I utility for bodies beyond general yield. Also, proportional macro-loading may result in non-
proportional micro-loading. The J integral is therefore not useful for calculating microcrack
strain energy release rates.

Although the model has not yet been utilized to predict stress-strain behavior, it has
been utilized to predict initial yielding, as shown in Fig. 21. Further details about the model
can be found in Appendix 7.3.

I 2.2.4 Effective Elastic Properties of Randomly Oriented Fiber Composites Due to Forming

One of the proposed tasks in the research program was to develop constitutive
equations for metal matrix composites which could be used in the laser heating experiment.
Although our ultimate intent was to produce a thermoviscoplastic constitutive model, we
discovered that the initial elastic properties of chopped fiber composites were affected by the
forming process. Therefore, we developed a model for predicting the initial elastic properties
of the composite. The procedure utilizes the equivalent inclusion method, as described in detail
in Appendix 7.2.

To see how this is accomplished, consider a single representative volume element of
a composite material reinforced by continuous or discontinuous fibers, as illustrated in Figs. 22-a
and 22-b, respectively.

I It is clear that the above volume elements are transversely isotropic, thus five independent
elastic moduli should be determined theoretically or experimentally for both cases. Since it is
very cumbersome to solve an exact boundary value problem associated with the double cylinder
model shown in Fig. 22, the authors utilize the equivalent inclusion method proposed by Taya,
et al. [11,22]. For a continuous fiber composite, a number of theoretical solution schemes have
been investigated for determining the five independent elastic moduli of the transversely isotropic
volume element [23-26]. When the fiber length is very large compared to the fiber diameter,
these solution schemes may be applied to a composite even with discontinuous fibers.

I
I
I
I
I
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I For convenience, the composite elastic moduli of the volume element are assumed to be
known. In matrix form, they can be written as

I a11  C C12 C12  0 0 0

,22 C12 C2 C23  0 0 0 e.2
033 C12 C23 C22 0 0 0 e3 (21)

023 0 0 0 (C2-C 3) 0 0 e23

031 0 0 0 0 2C6 0 e3l

1 0 0 0 0 0 2C66 12

If a composite is initially isotropic, the reinforcing fibers do not have a preferred
orientation. The probability density distribution for fiber orientation may be represented by a
sphere in the three dimensional case. In the case where the fibers are distributed randomly in
a single plane, the sphere degenerates to a circle. The degree of randomness of the volume
element can be mathematically formulated for an initially isotropic short fiber composite after
certain types of permanent deformation, such as hot pressing, extrusion, or rolling. When the
composite is subjected to hot pressing or extrusion, the material becomes transversely isotropic.
For example, a cube becomes a square plate or a cylinder becomes a circular disc, and vice
versa. For an arbitrary thickness change and diameter change due to hot pressing and extrusion,
respectively, an initially isotropic composite becomes transversely isotropic as illustrated in Fig.
23a and 23b. Alternatively, a forming process such as rolling causes orthotropic reorientation
of fibers, in which one of the dimensional changes is negligibly small, as shown in Fig. 23c.

I The present approach requires three assumptions:

1. Although the fibers after each of the material forming processes mentioned above may
not be evenly distributed within the subdomain illustrated in Fig. 24, the fiber
distribution density is assumed to be spatially homogeneous for mathematical

* simplicity.

2. The material forming processes mentioned herein are possible only through the plastic
deformation of the matrix material. Plastic strain may not be spatially homogeneous
in the matrix material due to stress concentrations near the reinforcing fibers. Also,
it is well known that even an isotropic homogeneous material becomes transversely
isotropic or orthotropic after the subject forming processes. This plasticity effect is
neglected in the present study.

3. The material forming processes mentioned above may cause defects, such as broken
fibers, fiber matrix debonding, etc. Furthermore, microvoids cannot be completely
removed from the composite. The present study assumes a defect-free composite.

* 28

I



I 3'

AXI

Fig. 23aFbrRoinain'u oHtPesn

I2



I
I

121

* 3'

I -/

MAJOR

I A,
1' / 2

I

I 30

/

\ /

I /

~MAJOR

UFig. 23b Fiber Reorientation Due to Extrusion

I
1 30

1



I
I

1 31

1' 21

I
I

I 21
MAJOR

I/ ,
I \ 2'

I -

I

IFig. 23c Fiber Reorientation Due to Rolling

I

I



FIE

I3

23



I

I The composite stiffnesses after reorientation of each volume element due to hot pressing
depend on the ratio of virgin material thickness to formed thickness. From Fig. 23-a,

sin* = a (22)
tb

I Thus, the stiffness components after hot pressing are given by

1 + , •A (23)
cWd f f CiOdC~t 2nsin* ,0 ,C12i0 Od

-- where

CI= a,, ajq ab a, CP,. (24)

-- As shown in Fig. 24, the direction cosines, a. , can be defined as

[sinOcos -cosOcosO sin(

av - sinOcos -cosOsin -cos4 (25)

ScosO sinO 0

I Substituting (24) and (25) into (23) gives the five independent elastic constants after hot pressiaij
in terms of the thickness ratio and the elastic constants of a perfectly aligned fiber composite.
These are described in Appendix 7.2.

As mentioned earlier, the five independent elastic constants for a perfectly aligned fiber
composite must be known prior to the forming process. The shape of reinforcing short fibers
or whiskers has been frequently assumed by a number of researchers [11,22] to be a prolate
spheroid. This approach is known as the equivalent inclusion method from which all elastic
constants of a composite reinforced by aligned inclusions can be estimated either analytically or
numerically.

From the present study, the effective elastic constants for aligned continuous or
discontinuous fiber composites can be predicted. The effective transverse Young's modulus is
compared with the experimental data in Fig. 25.

In Fig. 26 the effective elastic constants for a composite with aligned discontinuous fibers
are illustrated for glass fibers in polystyrene. The elastic constants are then utilized as input data
for determining the effective Young's modulus of the same composite with randomly
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U oriented fibers in a two dimensional domain. Fig. 27 shows the comparison between the present
study and the experimental result of Lee [27].

The variations of the effective Young's modulus in the major axis are illustrated in Fig.
28 for an ideal short fiber composite subjected to each of the three material forming processes
discussed earlier. Consider an extreme case in which the thickness ratio is zero. In such a case
the fibers after hot pressing or rolling become planar. The material properties after hot pressing
become transversely isotropic, while those after rolling remain orthotropic. When the material
is subjected to an extrusion in which the diameter ratio approaches zero, the material properties
for a perfectly aligned fiber composite are retrieved, as shown in Fig. 28.

From the present study, an engineering tool is proposed for theoretical evaluation of the
elastic properties for a composite with perfectly aligned short fibers.

2.3 ExpLrimental Programs

I The experimental research was performed in two distinct areas: constitutive testing; and
plate response to external heating. The constitutive experiments involved uniaxial testing of
coupons at elevated temperature. The results of these tests were utilized to characterize the
material constants for current uniaxial thermoviscoplastic constitutive models.

The second experimental area, the testing of plates under external heating was necessary
to verify the theoretical models developed herein. These two experimental efforts are discussed
in greater detail in the following two subsections.I
2.3.1 Constitutive Testing

3 As a part of the research program it was necessary to produce a thermoviscoplastic
constitutive model applicable to Hastelloy X, the material used in the plate experiments. Toward3 this end, the constitutive theories chosen for this investigation were those of Bodner [3] and
Walker [4]. Selection was based upon several considerations, namely: 1) these models have
been scrutinized very carefully in the literature and are now considered to be in a mature form:
2) these models have been previously used to model the behavior of Hastelloy X; 3) parameter
evaluation schemes are more readily available for obtaining "initial" estimates to the material
constants; and 4) continued development of these models requires a thorough understanding of
their full potential, as well as their limitations. These models are reviewed in detail in Appendix
7.4.

I The construction of these models required that a series of complex experiments be
performed for temperatures of 1100 and 1700DF using four different mechanical testing modes.
These include monotonic tension, fully reversed cyclic, stress drop, and complex history
experiments.
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All of the tests performed during this program were carried out in the Solid Mechanics
Laboratory of the Aerospace Engineering Department at Texas A&M University using an MTS
880 servo-hydraulic closed-loop testing machine. The load frame was configured with a closed-
loop heating chamber, water-cooled hydraulic grips, and externally mounted load cell, and axial
extensometer, and a mini-computer for controlling testing operations. The heating chamber had
a maximum operating range of 1800OF and was of the three zone, resistive heating, clam shell
type design. Temperature feedback for each longitudinal set of heating coils was provided by
24/28 gauge K-type bead welded thermocouple wire. The temperature at the center of each zone
was monitored by its own process and power controller and enabled the user to establish and
maintain a spatially uniform temperature profile (within ASTM specifications for a short term
test) along the gauge length of the specimen. A set of Fiberfrax insulating plugs placed on the
top and bottom access ports of the furnace and grips which extended into the hot zone were used
to reduce and/or minimize the effect of convective and conductive heat losses, respectively.

I A high temperature specimen grip system was utilized for this series of experiments and,
as stated above, extended into the main body of the furnace. The grips were designed to accept
threaded specimens through the use of an inside/outside threaded adapter. Backlash in the
specimen/adapter assembly was removed via a hydraulically operated piston which could be
loaded to a specified amount. Grip alignment was performed prior to and during testing (failure
of one of the specimen adapters necessitated a realignment during the course of the experimental
program). This included a check of both concentricity and angularity of the load train with
respect to the actuator rod movement. The alignment procedure yielded a total indicated run-out
of 0.0008" at an angle of 0.220, as measured by a digital dial indicator accurate to 0.00005".
However, since the adapter assembly contained a number of threaded components, it was not
reasonable to expect any degree of repeatability of these measured quantities, however; they are
stated for the sake of completeness. It should also be noted that there was no explicit
measurement of specimen bending strains to ensure compliance with ASTM specifications.

The primary measured data of interest included load, displacement, and temperature.
The load data were obtained via a 10 KIP load cell mounted in the load train. Displacement
data were measured using a one inch gauge length, air cooled, axial extensomenter. The
extensometer was mounted outside the furnace and used a set of conical tipped quartz extender
rods to make contact with the specimen. Signal conditioning for both of these transducers was
part of the MTS 880 load frame system and possessed a multiple range select feature which
provided maximum data resolution. Load and displacement data were measured using a 12 bit
A/D system which had a +5 mV resolution and was an integral part of the controlling and
measuring computer system. Temperature data were obtained using three 24/28 gauge K type
thermocouples equally spaced along the gauge length of the specimen. The thermocouples were
connected to a multi-channel digital thermometer which was not an intergral part of the A/D
measuring system. Therefore, temperature data were not automatically recorded on a regular
basis, as were the load and displacement measurements. Instead, temperature values at the
beginning of a test were entered by hand into the data acquisition program and simply monitored
thereafter. The thermocouples were attached to the specimen using the self-supporting method.
This method of attachment provided sufficient thermal contact with the material to yield
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I accurate temperature measurements and did not flaw the specimen (which in general can result
in premature failure), as is common with welding thermocouples to the surface.

I The Hastelloy X material used to fabricate the specimens was purchased in bar stock
form from Atek Metals Center of Houston, Texas. This was a solution strengthened material
conforming to ASM specification number 5754H. The design of the specimen was that of a
standard, constant gauge section, low cycle fatigue geometry having a nominal one inch gauge
length and quarter inch diameter circular cross-section. The specimens were fabricated to meet
ASTM E606-77T specifications except for the surface finish and post machining heat treatment.
A 32,u finish was used instead of the typical 8As for cost considerations. In addition, the
specimens were used in an "as received" condition with no additional heat treatment to remove
microstructural damage resulting from the machining process.

A total of 27 tests were conducted in fulfillment of this isothermal constitutive test
program. Two cyclic tests were carried out at 1200 and 1600'F, respectively, and served as a
basis of comparison to previously obtained data and for uniaxial constitutive code verification.
Specific details of the remaining 25 experiments are as follows. Monotonic tension and fully
reversed cyclic tests were performed at 1100 and 17001F, using a variety of strain rates, ranging
from lxl0 5 to 3x103 sec 1, under strain controlled conditions. Strain amplitudes for the tension
and cyclic test were 4.0% and 0.8%, respectively. However, the strain amplitude of 0.8% was
subsequently reduced to 0.4% during the course of 1100lF experiments because specimen
buckling became a problem. This was apparently the result of a material instability at the
selected temperature and strain rate.

The fully reversed cyclic experiments were carried out until a saturated condition was
achieved. For the purpose of this test program, cyclic saturation was defined as a change in
stress amplitude of less than 100 psi from one cycle to the next. The stress drop tests, used to
measure values of back stress, were performed by inserting a hold time on the unloading branch
of a fully reversed saturated hysteresis loop, and monitoring the creep response. When positive
creep was observed, the hold stress was greater than the back stress and vice versa, when
negative creep was seen. Since it is very difficult to obtain the exact hold stress which results
in no creep, the general procedure was to bracket the positive and negative creep responses anduse a linear regression scheme to estimate the values of the back stress. Additional stress drops
were made on a specimen after it had been recycled to saturated condition.

I Finally, two experiments, one each at 1 00*F and 1700o', were performed in order to
verify the predictive capabilities of the constitutive models considered herein. These complex
history tests included mechanical effects such as strain rate jumps, relaxation, cyclic behavior,
and strain holds. A complete summary of the entire test matrix can be found in Table 1. The
material parameters resulting from these experiments are listed in Tables 2 and 3.

U Figures 29 and 30 demonstrate the predictive capabilities of the models compared to
complex history tests performed on Hastelloy X at 1700*F. Experimental results were compared
to Bodner's model at 17000F, as shown in Fig. 29. This figure shows that Bodner's model
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I Table 1. Test Matrix.

I Strain Strain Type of
Test Specimen Thmp. Rate Amp. T.-st

(F) (sec I) (%)

I 4 1100 1.192!E-05 2. Monotoni
Tension

5 5 1100 1.1921E-05 0.8 Cyclic
6 6 1700 1.1921E-05 0.8 Cyclic
7 1700 1.2207E-04 0. Cyclic
8 8 1700 1.1903E-03 0.8 Cyclic
9 9 1700 5.0362E-04 0.8 Stress

Hold
10* 10 0.6 Monotonic

Tension
11 11 1700 1.1903E-03 4.0 Monotonic

Tension
12 12 1700 3.8148E-03 0.8 Cyclic
13 * 13 1100 3.8148E-03 0.8 Cyclic
14 14 1100 1.2207E-04 0.8 Cyclic
15 * 15 1100 1.1903E-03 0.8 Cyclic
16 16 1100 1.1903E-03 4.0 Monotonic

Tension
17 17
18 * 18 1100 1.1903E-03 0.8 Cyclic
19 19
20 20
21 21 1100 5.3047E-05 0.8 Stress

Hold
22 * 22 * 1100 5.0362E-04 0.8 Cyclic
23 23 1100 5.0355E-04 0.6 Stress

Hold
24 24 1100 1.1902E-03 0.4 Stress

25 25 
Hold

26 26
27 @ 27 1100 0.6 Complex

History
28 @ 28 1700 0.6 Complex

His tory

I
I
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I Table 2. Material Parameters for Bodner's
Model at II00"F and 1700"F.I

Parameter 1100OF 1700°F

Al, sec "- 0.6500E-04 0.6500E-04

A2 , sec
"I  0.6500E-04 0.6500E-04

Do , sec
"I  0.1000E+05 0.1000E+05

E, psi 0.2394E-08 0.1900D+08

rI  0.9800E-00 0.9800E-00

r2  0.9800E-00 0.9800E-00

mi, psi -' 0.5500E-03 0.5500E-03

I m2 , psi
"I  O.IIOOE-01 0.11OOE-02

m3 , psi-' 0.3477E-04 0.3477E-03

n 0.1000E+01 0.7000E-00

Z0 , psi 0.1000E+06 0.2500E+06

Zl, psi 0.2900E+06 0.2200E+06

I Z2 , psi 0.1000E+06 0.2500E+06

Z3 , psi 0.1300E+06 0.8200E+05

I
I
I
I
I
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i Table 3. Material Parameters for Walker's
Model at IIO0"F and 1700"F.I

Parameter 1100°F 1700°F

i L, psi 0.S580E+05 0.i080E+06

D2 , psi .OOOOE-00 0.OOOOE-00

E, psi 0.2394E+08 0.1900E+08

n1 , psi O.OOOOE-00 0.OOOOE-00

.2, Psi 0.4200E+07 0.2500E+06

i n3  O.OOOOE-00 O.OOOOE-00

n4  0.OOOOE-00 0.OOOOE-00

n5  0.OOOOE-00 0.0000E-00

n6 , psi(l
1 m)sec "1  O.OOOE-00 0.OOOOE-00

n7, sec O.OOOOE-00 0.OOOOE-00

i n 0.1420E+02 0.5000E+0O

M 0.1160E+01 O.1160E+01

BO, psi -0.2000E+04 -0.1000E+04

I
I
I
I
I
I
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U predicts an extremely "oversquare" response. This response is not in keeping with the
observations made previously in this study, where Bodner's theory accurately represented the
general shape of the stress-strain curve. Also, this model demonstrates insensivity to relaxation
and strain rate jumps. This response is contrary to information given by Bodner, where it is
stated that use of the plastic strain rate as the measure of hardening enables the model to better
predict strain rate jump behavior. This inconsistency is possibly due to the fact that the
hardening terms in the evolution equations saturate too quickly.

Figure 30 presents a comparison of Walker's theory to measured values at 1700'F.
Walker's model predicts the overall response accurately, including general shape, strain jumps,
and relaxation. This outcome is congruent with previous results.

Further results for this phase of the research can be found in Appendix 7.4.

U 2.3.2 Plate Testing

An experimental program was developed to investigate the transient response of a
viscoplastic plate subjected to rapid heat input. Of particular interest was the measurement of
the displacement and temperature fields for a rectangular plate specimen undergoing rapid laser
heating. The experimental program was performed at the Air Force Wright Aeronautics
Laboratories using the LHMEL I (Laser-Hardened Materials Evaluation Laboratory) facility.

A specimen support fixture was designed to impose clamp-like boundary conditions along
each edge of a rectangular plate specimen. The super-structure of the fixture was fabricated
from 6061-T6 aluminum to support the specimen in the vertical position, as shown in Figs. 31a
and 31b. An insert made of 304 stainless steel served both as a support stiffener and water
jacket. The total water cooling system provided a uniform and constant plate boundary
temperature using tap water. Thermocouples were attached to each half of the insert at the mid-
position, approximately 0.5 in away from the specimen, to record any temperature variations.

Hastelloy X material was obtained in plate form from ATEK Metals Center, Inc.,
Cincinnati, Ohio. Three 27 x 40 in plates with designated heat numbers 2600-7-4649, 040161,
and 260-7-4630, corresponding to nominal plate thicknesses of 1/16 in, 1/8 in, and 1/4 in,
respectively, were used to fabricate a total of 18 specimens (6 of each thickness). The material
was received in an annealed condition specified by ASTM 5536 and used without further heat
treatment. No micrographic studies were performed to investigate the variations in grain
structure or size that existed between the different heats.

An integrated instrumentation package was used to simultaneously measure the
displacement and temperature fields in a plate specimen undergoing laser irradiation. The
primary instrumentation included: 1) LVDT's (Linear Variable Differential Transformers) for
measuring displacement; 2) thermocouples for measuring temperature; 3) a radiant pyrometer
for measuring surface brightness temperature; and 4) strain gages for measuring the plate
vibration frequency. A 12 bit, high speed data system (called the PCM) was used to convert
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I b) Support Structure Front View
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I the analog output of these transducers and thermocouples to an equivalent binary form at an
approximate rate of 1.2 KHz. Once converted, the data were stored on magnetic tape for
subsequent conversion to engineering units and any other post-processing. Described below is
a more detailed discussion on the implementation of the various pieces of instrumentation.

A total of 11 Schaevitz DC-operated LVDT's (model number GCD-121) were used to
sense the out-of-plane displacements resulting from the laser deposition. The outputs of the
LVDT's were scaled via the data system, to detect displacements as small as 0.0001 in, at a
published maximum frequency response of 15 Hz. The LVDT's were arranged in a symmetric
pattern around the heat zone (see Fig. 32) and were rigidly mounted to a support system which
was positioned directly behind the specimen, as shown in Fig.'s 33a and 33b. In addition, 2
LVDT's were used to monitor relative movement between the LVDT support system and plate
fixture.

Measr,'ment of the in-plane temperature field, through-thickness temperature gradients,
and non-contact plate surface temperatures, were made using 21 K-type 30 gage thermocouples.
As shown in Fig.'s 34 and 35, the thermocouples were concentrated in a 1 in diameter circle
around the heat zone and were arranged in a symmetric pattern for measuring the in-plane
temperature field. The through-thickness temperature gradients were measured using
thermocouples positioned at the same coordinate locations, but mounted on the front and back
of the specimen. All thermocouples were intrinsically mounted to the specimen via a welding
operation with the exception of 4 thermocouples. All thermocouples mounted on the front
surface of the plate (the heat side) were Inconel 600 heated to withstand the extreme
temperatures, whereas the thermocouples mounted on the back side of the specimen were
insulated using high temperature glass braid. The thermocouples were connected to the data
system via a 150OF reference oven, which for this test was left open to room temperature. For
thermocouple inpw the data system was scaled to record voltage changes on the order of 0.03
mV, which corr'-sp ids to a measured temperature resolution of approximately 1.4°F. Thus,
taking into accouiat the NBS wire error specification and the above resolution, a maximum
temperature uncertainty between 5.36°F and 18.5 0F can be expected.

A Thermogage Corporation germanium radiation pyrometer (model number 8000-1) was
used to obtain relative measurementz of the plate surface brightness temperature. The pyrometer
is a high speed transducer, having a peak spectral response at a wavelength of 1.5 m and an
effective temperature range between 900'F and 5400F within a target area of approximately
0.0491 in2. The pyrometer was aligned to record temperatures within the laser irradiated spot
diameter in conjunction with a thermocouple. The output of the pyrometer was fed into the data
system for use later in developing an appropriate transfer function for the slower responding
thermocouples.

A Micro-Measurements CEA-13-12SUN-350, 350 11 strain gage was used to measure the
dynamic response of the specimen resulting from the rapid heating. The strain gage was parallel
with the edge of the plate specimen approximately 2.5 in off center. Since vibration frequenies

I
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I

I and not strain magnitudes were of interest, the output of the strain gage was displayed on a
Visicorder strip chart recorder.

I The experiments were performed at the Air Force Wright Aeronautics Laboratory in the
LHMEL I facility, which is managed and operated by ACUREX Corporation. A schematic of
the facility and pertinent equipment is shown in Fig. 36. ACUREX personnel were responsible
for the overall test procedures which included: 1) safety considerations; 2) calibration of the
laser and other support equipment provided by ACUREX; 3) the laser operating characteristics;
4) the laser fire sequence; and 5) sufficient photographic documentation to reproduce the test
setup.

The plate specimens were irradiated using a high energy electric discharge 15 KW
continuous-wave carbon dioxide laser operating at a wavelength of 10.6 g~m with a flat-top beam
profile. The exact beam profile, which includes both width and density, was determined by
ablation of square plexiglass specimens, as shown in Fig. 37. By measuring the plexiglass bum
patterns, both the laser target area and beam uniformity in the radial direction can be found (see
Fig.'s 38a and 38b for a typical example). For this experiment, the laser contact spot was found
to be ellipsoidal, having major and minor axis lengths equal to 0.5235 in and 0.5276 in,
respectively (this is a result of the beam striking the specimen at a 100 incidence angle in order
to prevent energy feed back through the laser z-pattern).

The test apparatus was positioned in the laser facility test cell, as shown in Fig. 39.
Additional items used during the experiments, but not previously discussed are: 1) a nitrogen
flood box which was used to prevent oxidation of the specimen surface while it was being
heated; and 2) video and high speed (500 frames/sec) cameras for documentation of the plate
response during laser deposition.

A total of 4 laser/structure interaction experiments were conducted. All 4 tests utilized
the same 1/16 in thick plate specimen (number HX POl16G) with input heat flux and exposer
time serving as test variables. The primary objectives of the first three tests were to measure
the displacement and temperature fields. Therefore, laser power levels and exposer times, as
shown in Table 4, were adjusted to bring the specimen temperature to just below the melting
point. Figures 40 and 41 show typical output of the LVDT's and thermocouples during laser
irradiation.

I The last experiment run on the specimen was a burn through test. The objective of this
test was to find an upper bound on the laser power settings and exposure time for this material.
Only temperature data was taken in order to preclude damaging any of the LVDT's when burn
through occurred. The results of this experiment are best shown in Fig. 42.

In summary, a list of the major problems encountered during the tests is as follows: 1)
energizing and/or firing the laser adversely affected the measured data, both with noise and
voltage shifts; 2) there was no explicit indication of when the laser power was on and off the
target area; 3) the nitrogen flood box did not provide an inert environment and made
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I a) Before Ablation

I

I

I b) After Ablation

I
Fig. 37 Plexiglass Specimens Used to Check the Laser Beam

Width and Density
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I photographic documentation difficult; 4) the thermocouple reference junction needed to be below
room temperature; 5) a constant aperture setting on the video and high speed cameras made
photographic interpretation difficult at the specimen heated up; 6) the pyrometer data was
inappropriately scaled; and 7) there was apparent movement of the LVDT support stand during
laser deposition.

IIt appears that the PCM malfunctioned during the experiments. It is believed that
significant background noise at 60 Hz was picked up by the apparutus, thus invalidating the
experimental results. Due to logistical problems, it was not possible to perform further
experiments to study this problem.

I Table 4. Laser Parameters for the Specified Tests

H Test Shot Incident Beam Heat Shot
Number Energy (KW- Area (cm2) Flux(KW/cm2 ) Dura loi

|sec)

1 49540 1.4 1.4 1 5.0
2 49541 2.8 1.4 2 3.0
3 4 9546 4.2 1.4 3 1.0
4 49550 7.0 1.4 5 1.2-1.6

Further details about the experimental program on plates can be found in refernce 2 and
I Appendix 7.7.

* 2.4 Conclusions

We have synopsized herein the results obtained during the course of AFOSR contract no.
F49620-86-K-0016. Below are a few of the major conclusions formed as a result of this
research effort:

1) analytic results suggest that high energy laser heating can induce dynamic response in
plate-like structural components;

2) where heating is of sufficient intensity, it is possible to induce significant viscoplastic
deformations in plates, and this inelastic response produces significantly different behavior
from elastic results;

U 3) laser heating of thin plates can produce significant geometric nonlinearity;

I
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4) two-way thermomechanical coupling in laser heated plates does not appear to be
significant because the inelastic strains do not oscillate substantially;

5) elastic properties in plates composed of short fiber metal matrix composites appear to
be strongly affected by the forming process - a model has been proposed herein to account
for this effect;

6) the thermoviscoplastic constitution of short fiber metal matrix composites is highly
complicated - a thermoviscoplastic model has been proposed herein which utilizes the
equivalent incluion method;

I 7) in order to model the thermoviscoplastic deformations that occur in a laser heated
metallic plate, it is necessary to develop sophisticated constitutive equations; these equations
require that a series of complicated experiments be performed - this has been done herein
for two candidate models; and

8) laser heating experiments on plates are extremely complex - although some initial
experiments were performed as a part of this research, more experiments are needed before
concise statements can be made about the accuracy of the models developed under this
contract.

6
I
I
I
I
I
I
I
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ABSTRACT

A Finite Element Model for Predicting Nonlinear Thermomechanical

Response of Plate Structures to Rapid External Heating. (August 1988)

Huang-Tsang Chang, B.S., National Taiwan University:

M.S., Oklahoma State University

Chairman of Advisory Committee: David B. Allen

I The objective of this dissertation is to develop a solution algorithm capable of

predicting transient thermal/structural response of viscoplastic metallic thin plates

exposed to hostile thermal loads. In the second chapter of this dissertation, the

author will describe the general background of the problem being considered in this

research. By assuming one-way coupled thermal/structural response, a solution

I approach is then outlined in the following chapter. In chapter four, a finite element

formulation is utilized to construct the solution algorithm. The developed code is

verified 'ith several simple cases in chapter five. In chapter six example problems

are given to demonstrate the full capabilities of the model Fnaiy, suggestions to

improve the current model are given and conclusions are drawn from this research

I in chapter seven.

I

I
I
I
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p ABSTRACT

APPLICATION OF CURRENT UNIFIED VISCOPLASTIC

CONSTITUTIVE MODELS TO HASTELLOY X AT

ELEVATED TEMPERATURES. (August 1990)

Lisa Diane McCrea, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. David H. Allen

The unified viscoplastic constitutive theories of Bodner-Partom and

Walker were investigated to determine their predictive capabilities using

experimentally obtained data on Hastelloy X, at 1100 and 1700°F, as the

basis of comparison. Material parameters for theses models were obtained

using an iterative style approach, which does not require the constants to

p be explicitly evaluated, as is traditionally done. Instead, the nonlinear

form of the constitutive equations are numerically integrated using physi-

cal incite, as well as knowledge of the parameters, until acceptable val-

ues are obtained.

II
Comparisons to experimental data revealed that the constitutive

theories are not able to simultaneously model the initial and fully satu-

rated condition of a material which has undergone a considerable amount of

cyclic hardening. In addition, a power law based strain rate equation is

shown to model this material system best overall.

The iterative method for determining the material constants is shown

to be a viable alternative, proving to be much simpler and less time con-

suming than previously developed procedures.I
I
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Analysis of Coupling and Rate Effects
in Viscoplastic Plates

Subjected to Rapid Heating

i by
M.S. Pilant

Mathematics and Aerospace Engineering Departments
Texas A&M University

College Station, TX 77843

ABSTRACT

In this paper the governing equations of motion are constructed for a three dimensional
domain which is composed of a thermoviscoplastic material subjected to both thermal and
mechanical loading. The resulting thermodynamic and mechanical field equations are two-way
coupled in the sense that the deformations are temperature dependent and vice versa. The field
equations are cast into a well-posed boundary value problem, and a weak variational form is
constructed. This form is then discretized using the finite element method.

Example problems are solved for a circular plate subjected to rapid external heating
simulating a laser input. It is found that inertial effects cannot be neglected, since the plate
undergoes vibrational response. However, the two-way coupling appears to be a second order
effect.
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Formulation of 3-D, axi-symmetric equations of motion

I 0. Introduction

In this report, we derive the governing equations for a three dimensional plate, either freely

supported or clamped (with no external loads), subjected to boundary heating by a laser

focused on the center of the plate. No geometric nonlinearities are included, but two-way

coupling between thermal and mechanical forces are allowed, as is the generation of heat

by inelastic deformations.

In the first section, we derive the governing equations. In the second section, we derive
the weak formulation of the system of partial differential equations. In the third section, we

derive the Galerkin finite element method (FEM) for this problem. In section 4, we define

various coefficients and forces for the problem.

1. Governing equations

We consider a radially symmetric three dimensional plate. We examine two different

boundary conditions - freely supported with no external loads and clampled, with no

external loads. The momentum equations are
I9C2u a 1 1 az

P- - [-Orr + - 'rr - -0' 
+  Orz] = , (1.1)

Or r r az

[W 1rz + 1rz + az] = 0, (1.2)

Ot2  r Oz

With thermo-elastic and inelastic coupling therms, the thermal equations are [1]

PCat _ kV 2T + a&iiT = agrIii, (1.3)

and the constitutive relations are given by the simplified Bodner-Partom constitutive

model [2]

1' = v2Do60exp( I
-Z!r

= m(Z1 - a2)L7iE, - Ai Z (012 , ),

where c!) are the components of the inelastic strain, and a 2 is the drag stress. We have
defined 1(E = ( 6ij and =ai IVEa- &jThe dependent variables are u the radial displacement, w - the vertical displace-

ment, T - the temperature, and q., a2 - the internal state variables.
11
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U The stress-strain relations are given by

I Orr = (A + 2p)Err + A(ee + E:-)

il = (A + 2p)Eee + A(err + e,)

I Ozz = (A + 2u')e - + A(Err + E00)

0rz = 2 Erz

and the strains are related to the dependent variables by

I O~u I T T)
Err rrr T- -TR)

fee - - - a(T -TR)
r

w (TTR)
Ezz -Fz Ezz -- -

I1lOu Ow ( T)
Erz = 1(- + -) -E - a(T - TR)

We have assumed a thermal stress tensor a which is isotropic.

The above equations are the fully coupled, axi-symmetric equations describing the

thermo-mechanically induced motion of a circular plate subject to boundary heating at

the center of the plate.

In the next section, we derive the weak formulation of equations (1.1)-(1.4).

II
I
i
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2. Weak formulation

Multiplying equation (1.1) by a test function € and integrating by parts, we obtain

a2 purdrdz +]][rrr + LOrOr, + ee] drdz rrinids =0 (2.1)
&

2  ,ar r  '9

Substituting for a in the above equation, we have

t purdrdz +1] "or(A + 2p)"rdrdz +] ]orA(- + -'-)drdz (2.2)

+ !orzp'a + )drdz + 11[(A + , u + Or +  Ozd

i[2 r r + (3A + 2p)as(T - TR)l drdz + f[ 0[2pEI + (3A + 2 we)a(T - TR)]drdz+

Jf -r [2p,< + 2pac(T - TR)] drdz

where we have used the fact that if 0 and consequently E =0, since we are starting
from the elastic regime. Note that the right hand side of (2.2) is driven by two competing
effects - the temperature difference T - TR and the inelastic terms Ei.

From equation (1.2) we obtain

a2 j pwrdrdz + jj rrr + ozra,,] drdz =JOro.,inhds 0 (2.3)
i 0&2 - ~arz Oazzrz=

Substituting for a in the above equation, we have

1t- qpwrdrdz + r u +z +  )drdz (2.4)

+JJ1 Lr(A + 2 1 )-drdz + i O ('9 + -)drdz=

UL J r2p [f + a(T - TR)] drdz + JJ r[2pf'4, + (3A + 21 i)a(T - TR)]drdz

Again, note that the right hand side of (2.4) is driven by two competing effects - the
temperature difference T - TR and the inelastic terms e/.i

Integrating (1.3) against a test function € we get

O ipc,Trdrdz + kr [ar 0- + 8-0--]drdz = (2.5)

3



I
JherQds + JJ Oalrdrdz - Jf 

where the normal flux Q = kOis given by the Boltzmann Law

I Q = Qi + aE(T4 - T.) (2.6)

where Qin is the thermal input (on the boundary), a, is the Boltzmann constant, and E

is the emissivity of the surface. The heat equation (2.5) is driven by the boundary heat

input Q (which appears as a forcing term), the inelastic heating, and the thermo-elastic

coupling term.

I The FEM equations for u are fairly singular when r = 0. Since the radial displacement

must vanish at r = 0 for an intact plate, we define a new variable U by u - rU. In terms

of the variables U, w and T we have
a2o 2 drdz+ a +2)(J+ rU)ddz+ orA(U + -z )drdz (2.2')

&2I JJ 9r(A2L( Or~)rzr az

+ f rtr + -)drdz +± 1[0. + 2,u)U + tA(U + ") + A~- dL
az -,Or r a

I2er I ~~+ (3A±+21)a(T -TR)] drdz + fJ~[2,vff' + (3A + 2pufr(T - TR)] drdz+I
O[2pE, + 2ya(T - TR)]drdz

and
an4a pwrdrdz +~ IfOt~ U -a)drdz (2.4')

III+ O

Ot(A  2) drdz rA(r + 2U)drdz

Oz '9Z OZ Or

r~y[e,. +a(T - TR)] drdz + r2if4 + (3A + 2p)a(T - TR)] drdz

* and (2.5).

In terms of U, these equations no longer have a singularity at r = 0.

I
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-- 3. FEM formulation

To solve equations (2.2'), (2.4'), and (2.5), we approximate the unknowns by

i=N

U = 1j u,(t)4O,(r,z), (3.1)
i=0

i=N

w = 1 w(t)j(r,z), (3.2)
i=O

and i=N
T =E Tj(t)Oj(r, z) (3.3)

i=0

This leads to the set of ordinary differential equations of the form

A(')U,, + C('lU = F ( 1) - B(1)w

A(2)w '' + C(2)w = F ( 2 ) - B(2)U (3.4)

B(3)T ' + C(3)T = F ( 3)

Iwhere the matrices are given by:

(())

A j dprdzjdrdz

U(2 JJi!prq5,drdz
B JJ r -O± drdz + JJ 2A40- drdz +JJ5i A% dr dzij 9z ~r ifar 9zif a

I 2ff9 !r2 ~dd~f A 2 i ta.
8i ( O rj drdz + i 0( - yaj drdz+ aO-2Ar4jdrdz

I
IM -A+2ur2ajdd I O( + J2ti~c rck drdz io r2ajdd

Or Or O9r +



I

+jjwt jj (90drdzrd'zA+- -1-ArOjd rdz+ O(2A + 2,u)qOdrdz

C(2) = ff0jpr9 ± drdz + ff ' (A + a4j drdz
JJ r rOr 19 +2 '9~2 -rz

C(3 f[ 9Okr9 -j + aO'krP 2.]drdz
9r ar '9z Oz

and the forcing functions by:

U F(1 1 f -± [2yJ, + (3A + 2p)ca(T - TR)]rdrdz+I [2J,' + ,+- >,,
[2y] + az - TR)Ilrdrdz + O 2E16 + (3A + 2p)a(T - TR)] drdz

JJ(2 - -2,u [e, +a TR)] jjrd +II-'- [2,,,4 + (3A + 2[t)c(T - TR)] rdrdz

and
F.(3) JJ Qds + Jf bjj4rdrdz - OkJJ rdz

We note, for future reference, that if p, cv, A, p, are constant in time, and independent
of the temperature T , then the system of differential equations (3.1) have constant coef-

ficients. This makes the solution by numerical integration very efficient, and allows one

* to investigate the relative importance of various terms in the equations without excessive
computation.

If the coefficients change rapidly with temperaure, the various stiffness matrices must
be recomputed (and re-factored) at every time step, which is very time consuming. If the

coefficients change more slowly, one must still periodically recompute and re-factor the

I matrix coefficients.

The first integral in F ( 3) is the contribution from the external heating on the boundary,

I the second integral is the contribution from the heating due to inelastic deformation, and
the final integral contains the contribution due to elastic deformation.

If the second and third term are included, we call the model two-way coupled, otherwise

it is one-way coupled. In the one-way coupled model, the temperature can be computed

independently of the mechanical deformations of the material. We also note that the
second contribution is always positive, that is inelastic deformation always yields heat.

In equation (1.3), we have

a,,T = a(3A + 2p) [,9 + - + 5 3aT] T

6



I
Therefore the coefficient of the 21 term is

pcv - 3a 2 (3A + 21i)T.

If this quantity is negative, then (1.3) is no longer a well posed parabolic equation. This
quantity is continously monitored in the numerical computations.

4. Definitions of coefficients (for Computer Program)

I In order to compute the integrals systematically, we define the following coefficients:
cl = pr c2 = pcvr C3 = (A + 2p)r
c4 =Ar c5 = pr c6 =(A + 2)
c7 = A C8 = I c9 = kr

C = 1.0 cil = pr 2  c12 = (A + 21i)r 2

C13 2T2  C14 = Ar 2  c15 = a(3A + 2y)Tr
SC16 = a(3A + 2p)Tr 2 C17 = a3(3A + 2y)Tr.

The flags icoeff are defined by:

icoeff = 1 for expressions of the form ff €jF€j,I _oi,icoeff = 2 for expressions of the form ff iF- Or,

icoeff = 3 for expressions of the form ff €' F

icoeff = 4 for expressions of the form ff0 F --O

icoeff = 6 for expressions of the form ff 0F o k,

icoeff = 6 for expressions of the form ff LF0_

icoeff = 8 for expressions of the form ff rOq •_U coeff = 8 for expressions of the form ff -- or ,

icoeff = 9 for expressions of the form ff oLF~j.
The physical paramers for the material under consideration are

ktherm =4.133 x 10 - 3 kg cal
m sec * K

A =1.15 x 107 MPa

p = 4.9 x 106 MPa

a = 8.64 x 10 - 6 cm

P =8.221 x10, k

cU = 0. 1-ca-

I7
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I =-1.0,

tmpref = 493.0, and

I steff = 3.3 x 10-15.

The constitutive paramaters are given representatively byI n-1

Z, = 2.03 x 10 3 MPa

A1 = 6.5sec- 1

ZI = Z 2 = 1.2 x 10 3 MPa

r = 0.98.

5. System of Equations

* The formulation in sections 2 and 3 is sufficient to compute the displacements accurately;

however, computing the stresses and strains (which involve gradients of the displacements)

near the origin where r = 0 is a delicate procedure. As an alternative method, we could
write the system in terms of the nine dependent variables {u, 2uo, l,' w, wo 8 w T, aT, '8T}"

With Ul U, U2 =-!-, 1U3 = -LU, WI = W, W2 = a-w, W3 = a--,TI=,T2 !

I T3 Tthe System of equations can be written as:

t" 2 Jf pr2 u1drdz + [r(2A + 2p*) + 0(2A + 2y)]uldrdz = (5.1)

JJ r2(A + 2r)U2drdz -J ArU2drdz J gr2 uU3drdz

0rliw 2 drdz - rA +AW 3drdz

+ [(3A + 2)a(€ + rL) + 2par LO ](T - TR)drdz

Orff r r -5 r.. + i 2pf]drdz

JJOu 2 drdz = JJ a udrdz (5.2)

JJOu 3ddz = a uldrdz (5.3)

2 OOprw2drdz a2rAudrdz r2Au2drdz (5.4)

I 8IfffL



r2 pU3drdz -YW dz - -r(A + 2ft)W 3 drdzU IOr 9r ifrizw9d
+ / [ 4 (3A + 2p)ar + LO 2,iar] (T, - TR,)drdz

jj Z Or
+ f[9- 21irci, + 4?2pr4e]

f [Or r, ]drdz

Jf4W2drdz = JJ4a wdrdz(5)

O drz= 0 aw rz(5.6)

JJ4wa~drdz = JJ4?kwdrdz kTdz (57
f 9r f aoz

+ fJ4 ds+ f var idrd z - OakrT~drdz _

Lo rTd[ 0 - aokrkrTz Odrd57

Or Ozffa

+ Jf Oa Qs +JJ4?o.-drdz - JJOaP 2T [2 &, rZ3-tidz =

ff _Tdd ff'? T rz 58

O ~kT~drdz = 0 aTdrdz+J5.9)

f f f 09
Thisleas t a xJ sy temofodiry eutors

J $3rd = JJ41Tiw d

A3 u3 = M20WI

A5T,' = -M1T A 15T3 + Q - 2AI 16 7t1 - 1i1 - MI 6  + A118T1

9



A3T2 = 1T

A3T3 = A2T

where
A, = Jipr 2 Ojrdz

A2 = J 0-r(2A + 2p)ji~drdz + JJi~(2A + 21L)O5drdz

A3 =11 drd
A4 = JfOirJ dz

A5 = JJ 4bipc~rq$jdrdz

Ah i-rpdrdz

Ii z

M, = q5(3A + 21L)aSjdrdz + ±0(3 21 )arojdrdz ± -2parbjdrdz

M!6 = JOqiro-jdrdz

M7= J Ociro-jdrdz

If az

Dz r 2 AqSdrdz

mg= Jf -rqSdd

All 1 0 Drf Or 2 podrdz

10



M 1 ] -- r(A + 2,u)q$,drdz

M13ao(3A + 2/i)arojdrdz + Jf 0 -2arq$,drdz

Ml 4 = '90kr,drdz

U M15 =1 o!.krO5~rdz

A111J6 bi(3A + 2)raTqOjdrdz

A118 JJq5(3A + 2M)3a 2 Tiq$drdz

MlI = J Oqiaojdrdz

M120 = JqOci drdz

.A121 1] Or O dr dz

.A122 JJ ~-.r a~jdrdz

This was in fact coded up, but did not give satisfactory results.



I

3 6. Alternate First Order System of Equations
With the substitutions ul = U = u/r u 2 = = u 4  =

U6 = - U7 8 and u = T, this leads to a slightly different 9 x 9 system of

ordinary equations.
U 1 = U 2

Alu' = -A 2ul - Mlu 3 - M 2u 4 - M3u 7 - M 4 8 + Ms(u 9 - TR)

I A 3 u' = M19u2

A3u4 = M20 u 2

!I
U,5 = U 6

A 4u6 = - 8 Ul - AfoU 3 - MOU4 -M AIIU7 -M A1 2u8 + M 13 (u 9 - TR)

IA3u7 = M19u5

A 3u' = AI20u 5

SAsu± + M 2 1u9 - 2 2 U9 =Q - 2-AIP1 - M17f3 - M]6fLs + M18iO

Although mathematically interesting, we were not able to numerically implement this

I effectively either.

I
I
I
I
I
I
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I Case I. The laser input was given by a step function, with Q = Qmaz = 2.5 x 10' Btu/m 2 ,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with 0, = 0.5,
At = 0.0001, N-ITER=4, with condensing and smoothing flags on. No thermo-elastic or
inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the
l horizontal deflection reaches its maximum.

I
I

i 0.00035

0.0003

0. 000251

0.0002

I 0.00015

0.0001

I 0.00005'

0.1 0.2 0.3 0.4I
I
I

Note that a characterstic frequence of 142.5 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).I
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The following is a graph of the vertical deflection w(O, zmax, t) at the point where theI laser is impinging.
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On the same scale, we have

0.01
0.05

0.I '3 O
-0I05

I The r-coordinates are given by
{O.O0e -2, O.02e -2, O.05e -2,O.l0e -2, O.20e -2, O.50e -2, 1.00e -2, 2.00e -2, 4.00e -

2, 7.00e - 2, 10.00e - 2}

and the z-coordinates by
f{0.00e - 3,O0.20e - 3,O0.40e - 3,O0.60e - 3,O0.70e - 3,O0.80e - 3,O0.90e - 3, 1.00e - 3}.



I
Case II. The laser input was given by a step function, with Q = Q,nax = 2.5 x 10' Btu/m 2,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with Oi = 0.5,
At = 0.00002, NITER=4, with condensing and smoothing flags on. No thermo-elastic or

i inelastic heating effects were included.
The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the

horizontal deflection reaches its maximum.

I
I
I
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0.0001

0.000075

0.00005
0.000025 0.02 0 .04 0 .06 0 .'08

I
I
I

Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).
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3 The following is a graph of the vertical deflection w(O, zmax, t) at the point where the
laser is impinging.
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On the same scale, we have

i
i
I
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I

IThe r-coordinates are given by
{0.00e - 2, 0.02e - 2, 0.05e - 2, 0.10e -2, 0.20e -2, 0.50e - 2, 1.00e -2, 2.00e -2, 4.00e -
2, 7.00e - 2, 10.00e - 2}

and the z-coordinates by
{0.00e - 3,0.20e - 3,0.40e - 3,0.60e - 3,0.70e - 3,0.80e - 3,0.90e - 3, 1.00e - 3}.
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Case III. The laser input was given by a step function, with Q = Qmaz = 2.5 x 104

Btu/m 2 , duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
I = 0.5, At = 0.0001, NITER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of approximately 140 cycles/sec is present in the
radial direction. wbreas a much slow vertical oscillation is induced (see the next figure).i
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I
I The following is a graph of the vertical deflection w(O, zmax, t) at the point where the

laser is impinging.
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i

On the same scale, we have
The r-coordinates are given by a finer grid

{O.00e-2, O.Ole-2, 0.02e-2, 0.035e-2, 0.05e-2, 0.10e-2, 0.15e-2, 0.20e-2, 0.50e-
2, 1.OOe - 2, 2.00e - 2, 4.00e - 2, 7.00e - 2, 10.00e - 2}

and the z-coordinates by a finer grid
S{O.OOe - 3, O.05e - 3, O.lOe - 3, 0.20e - 3, 0.30e -3, 0.40e - 3, 0.60e -3, 0.70e -3, O.80e -
3,0.90e - 3, 1.00e - 3}.
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I Case IV. The laser input was given by a step function, with Q = Qmax = 2.5 x 10'
Btu/m 2 , duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
O = 0.5, At = 0.00002, NATER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the
horizontal deflection reaches its maximum.
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I

Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).I
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The following is a graph of the vertical deflection w(O, zmax, t) at the point where the
laser is impinging.
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I On the same scale, we have
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I
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The r-coordinates are given by a finer grid
{O.OOe- 2, O.Ole- 2, O.02e -2, 0.035e- 2, O.05e-2, O.lOe-2, 0.15e-2, 0.20e -2, 0.50e-
2, 1.OOe - 2, 2.00e - 2, 4.00e - 2, 7.00e - 2, 1O.OOe - 2}

and the z-coordinates by a finer grid
{O.OOe - 3, O.05e - 3, 0.10e - 3, 0.20e - 3, 0.30e - 3, 0.40e - 3, 0.60e - 3, 0.70e -3, 0.80e -I
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I
Case V. The laser input was given by a step function, with Q = Qma = 2.5 x 10 4 Btu/m 2,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with 9i = 0.5,
,nt = 0.0001, NJTER=4, with condensing and smoothing flags on. No thermo-elastic or
inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of approximately 120-140 cycles/sec is present
in the radial direction, whereas a much slow vertical oscillation is induced (see the next

* figure).
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l

U The following is a graph of the vertical deflection w(O, zmax, t) at the point where the
laser is impinging.
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On the same scale, we have
The r-coordinates are given by

f{0.OOe -2, 0.0e -2, 0.02e - 2, 0.03e -2, 0.04e -2, O.06e - 2, 0.lOe -2,0. 15e -2, 0. 2 0e -
2, 0.30e - 2, 0.60e - 2, 1.00e - 2, 2.00e - 2, 4.00e - 2, 6.00e - 2, 8.00e - 2, 10.OOe - 2}

and the z-coordinates by
{0.OOe - 3, 0.02e - 4, O.04e - 3, 0.07e - 3, 0.lOe -3, O.15e - 3, 0.20e - 3, 0.30e - 3, 0.40e -
3, 0.60e - 3, 0.70e - 3, 0.80e - 3, 0.90e - 3, 1.00e - 3,}.I
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I
Case VI. The laser input was given by a step function, with Q = Qmax = 2.5 x 10 4

Btu/m 2 , duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
9i = 0.5, At = 0.00002, NATER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax, zmax, t), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).
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I
I The following is a graph of the vertical deflection w(O, zmax, t) at the point where the

laser is impinging.
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i On the same scale, we have
The r-coordinates are given by

{O.OOe -2, O.Ole - 2, O.02e - 2, O.03e -2, O.04e -2, O.06e - 2, O.lOe -2, O.15e -2, 0. 2 0e -
2,0.30e - 2,0.60e - 2, 1.00e -- 2,2.00e - 2,4.00e - 2,6.00e - 2,8.00e - 2, 1O.OOe - 2}

and the z-coordinates by
{O.OOe - 3, O.02e - 4, O.04e - 3, O.07e -3, O.lOe -3, 0.15e - 3, 0.20e -3, 0. 3 0e -3, 0. 4 0e -
3, 0.60e - 3, 0.70e - 3, 0.80e - 3, 0.90e - 3, 1.00e - 3, }.
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I Numerical Simulations

The following numerical simulations were run to test the code's sensitivity to mesh
size, time step, one-way versus two-way coupling, elastic and inelastic heating, and various

types of heat inputs.

Comparison of Various Effects:

In this section, we analyze the effect of including various terms in the mathematical model.

First, if we neglect the inelastic terms in the momentum equations we are solving a pure

thermo-elastic model. As an input, we have a step function, magnitude 2.5 x 10' for 20

msec duration. After it stops the plate oscillates with a frequency of about 20 hz. If we

include the inelastic terms in the momentum equations, one can see that the out of plane

displacment is correspondingly less, due to the damping of the inelastic terms. The region

of plasticity is small enough that the behavior is predominantly that of a thermo-elastic

plate under an impulsive heat sourse, with a small amount of damping due to inelasticity.
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Next, we change the input to correspond to a ramp function which is linear for 20

msec, then constant (2.5 x 104) till 100 msec, and then abruptly turns off. From the
graph on the next page, one can see that a slowly varying oscillation is induced about the
displacement which arises from a constant temperature source. Turning off the impulsive
heating then gives rise to noisy oscillation which is then damped out. Asymptotically, the
motion is damped oscillation about a displaced equilibrium state.
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I Finally, we have incorporated the inelastic terms in the momentum equations, and

tested the inclusion of the thermo-elastic and inelastic heating terms in the heat equation.

This gives rise to the figure on the next page. The results are virtually indistinguishable.

Numerical instability set in at the end of the run, due to small oscillations in the stress

levels reaching a certain amplitude. When the inelastic stresses and the thermal stresses

are of the same magnitude with the resultant stress, the numerical codes become very

sensitive to slight integration errors. This appears to be an intrinsic difficulty with initial

i value methods for integrating the dynamic plasticity equations.
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Inclusion of Two-Way Effects
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Summary:

The following is a summary of the results which we have observed after solving the three-

dimensional, axi-symmetric, fully coupled, thermo-viscoplastic equations for a laser heated

thin plate.

1. If the heat impulse is of sufficiently short duration, and very localized near the center

of the plate, the fundamental response is that of an elastic plate under a point load.

This is true under both stress-free and clamped boundary conditions.

2. If the heat impulse is ramped, a slow oscillation about a buckled state (which would

be given by constant thermal input) is observed. After the heat source is turned off,

a complicated return to a permanently deformed state is observed.

3. The inclusion of inelastic effects in the momentum equations accounts for about a

5-10% change in out of plane displacements.

4. The inclusion of inelastic two-way effects affects the out of plane displacements very

little (less than 2% observed change).

5. Relatively large grids may be used away from the boundary thermal input. The time

step limitations is primarily due to the rapid thermal heating characteristic time.

6. The following appears to be the approximate ranking of effects in the boundary heated,

no external loading, axi-symmetric plate problem:

a) Boundary heating, temperature response can approach 1000 degress Kelvin/sec

or more. The induced thermal stresses and strains.

b) Inelastic corrections to the deformations, and the resultant change in stress.

I c) Two-way thermo-elastic coupling.

d) Two-way thermo-inelastic coupling. This effect is extremely localized.

I4
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* Conclusions:

The use of a finite element code to solve the initial value problem describing the mechanical
response of a thermal-input driven axi-symmetric plate appears to yield reasonable short
term response. If the duration of heat input is the characteristic time, then the finite
element code could predict reasonable results up to 10 or 20 characteristic time intervals.

The simulator can distinguish between elastic and inelastic effects, as well as one-way
versus two-way coupling in the initial stages of nonlinear thermal-mechanical response.

The dominant effect is that of thermo-elastic oscillation under impulsive loading, with

secondary (permanent) inelastic deformations and damping, with tertiary thermal input

corrections due to two-way elastic and inelastic coupling.

Long time integration of the equations (on the order of 10,000 or more time steps)

did not appear reliable with the current code. Even though implicit predictor-corrector
and stiff integrators were used throughout, the accumulated error in the stress-strain pre-
dictions, and the sensitivity of the constitutive laws to errors in maximum stress, lead to

innaccurate asymptotic behavior. Constraining the inelastic behavior to lie on the correct
energy surface was difficult to impose with the initial-boundary value finite element model.

Large residual stresses, due to permanent inelastic deformation, also limit the time

step-size, even after the plate has ceased to be thermally excited.
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Appendix 7.2

I A Model for Predicting
the Effective Elastic Properties

of Randomly Oriented Fiber Composites
Subjected to Hot Pressing, Extrusion, and Rolling
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A MODEL FOR PREDICTING THE EFFECTIVE ELASTIC PROPERTIES OF

RANDOMLY ORIENTED FIBER COMPOSITES SUBJECTED TO
HOT PRESSING, EXTRUSION. AND ROLLING

Jong-Won Lee* and David H. Allen**
Aerospace Engineering Department

Texas A&M University, College Station, Texas

I
Abstract I. Introduction

The present paper develops analytical solutions A number of models have been proposed for pre-
for predicting the effects of hot pressing, extru- dicting the effective elastic properties of
sion, and rolling on the elastic properties of aligned or randomly oriented fiber composites. 1 8

.composite materials reinforced by either continu- The equivalent inclusion method utilized by TayaIous or discontinuous randomly oriented fibers. The and Chow 7 , and Taya and Mura8 provides a straight-
bounded orientation of fibers in the matrix mate- forward tool for estimating the effective Young's
rial is explicitly expressed in terms of manufac- modulus of a composite reinforced by either conti-
turing parameters. These manufacturing parameters nuous or discontinuous fibers. Hashin and Rosen's
account for hot pressing, extrusion, and rolling method1 may be utilized to estimate all elastic
of an initially isotropic composite with randomly properties of aligned fiber composites. The effec-

oriented fibers prior to the above material form- tive elastic properties have been calculated for
ing processes. The effective elastic properties two or three dimensionally random fiber orienta-
after material forming are given as functions of tion3 "6 and bounded fiber orientation in a two
material forming parameters representing dimen- dimensional domain 9 utilizing simple integration
sional change during manufacturing and the five schemes. However, these models are not directly
independent elastic constants for a perfectly applicable to a composite experiencing certain
aligned fiber composite. Finally, the present types of material forming because forming pro-

model predictions are compared with other theoret- cesses induce oriented fiber distribution.
ical models and experimental data. A systematic procedure has not previously been

developed to model an arbitrarily bounded random
orientation of fibers caused by material forming.

1 Nomenclature The authors thus propose herein a relatively
simple mathematical/graphical model for determin-

aij direction cosines ing the influence of bounded random orientation of
fibers on the effective elastic moduli of continu-

Cijkl stiffness tensor for an aligned fiber ous/discontinuous fiber reinforced composites.composite

Cijkl stiffness tensor in the spherical coordi- II. Model Formulation

nates of an aligned fiber composite
Consider a single representative volume element

Cijkl stiffness tensor after material forming of a composite material reinforced by continuous

where i, J, k, 1 - 1, 2, 3 or discontinuous fibers, as illustrated in Figs.
1-a and 1-b, respectively.

Cij stiffness tensor in contracted Voigt
notation where i, j - 1, 2. 6 fiber matrix

Da diameter after extrusion
Db  diameter before extrusion /
E Young's Modulus (a)
F fiber
f fiber volume fraction

shear modulus fiber matrix
M matrix
Sijkl Eshelby's tensor
ta thickness after hot pressing or rolling (b)
tb thickness before hot pressing or rolling
e|j strain tensor
=ijkl quasi-stiffness tensor
aij stress tensorv Poisson's ratio
iFig. 

1 Representative volume elements

* Research Assistant (a) Continuous fiber element
** Professor (b) Discontinuous fiber element

I1
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It is clear that the above volume elements are subject forming processes. This plasticity effect

transversely isotropic, thus five independent is neglected in the present study.
elastic moduli should be determined theoretically 3. The material forming processes mentioned
or experimentally for both cases. Since it is very above may cause defects, such as broken fibers,
cumbersome to solve an exact boundary value prob- fiber matrix debonding, etc. Furthermore, micro-
lem associated with the double cylinder model voids cannot be completely removed from the com-

shown in Fig. 1-b, the authors utilize the equiva- posite. The present study assumes a defect-free
lent inclusion method proposed by Taya, et al. 7  composite.
For a continuous fiber composite, a number of the-
oretical solution schemes have been investigated
for determining the five independent elastic mod-
uli of the transversely isotropic volume ele-
ment.1'4  When the fiber length is very large y 3y
compared to the fiber diameter, these solution
schemes may be applied to a composite even with . ..- I >
discontinuous fibers.
For convenience, the composite elastic moduli of (a) I 1

the volume element are assumed to be known. In
matrix form, they can be written as

2I T

011 C 1 1 C1 2 C1 2  0 0 0 '11

022 C12 C22 C23  0 0 0 (22

--33 ----------------- (1)-------- (b) r

0 0 0 0 (C22-C23) 0 0 '23

0'311 0 0 0 0 2C66  0 '31 major axis

!2L 0 0 0 0 0 2C66  '12 3' major! axis

If a composite is initially isotropic, the rein-**'
forcing fibers do not have a preferred orients- (c)

tion. The probability density distribution for \ //
fiber orientation may be represented by a sphere
in the three dimensional case. In the case where 1 0 2'

the fibers are distributed randomly in a single I
-plane, the sphere degenerates to a circle. The
degree of randomness of the volume element can be
mathematically formulated for an initially iso-
tropic short fiber composite after certain types
of permanent deformation, such as hot pressing,
extrusion, or rolling. When the composite is sub- Fig. 2 Fiber reorientation due to forming
-jected to hot pressing or extrusion, the material
:becomes transversely isotropic. For example, a (a) Hot pressing
cube becomes a square plate or a cylinder becomes (b) Extrusion
a circular disc, and vice versa. For an arbitrary (c) Rolling

thickness change and diameter change due to hot
pressing and extrusion, respectively, an initially
isotropic composite becomes transversely isotropic II-1. Hot Pressinr
under a transversely isotropic forming process as
illustrated in Figs. 2-a and 2-b. Alternatively, a The composite stiffnesses after reorientation of

forming process such as rolling causes orthotropic each volume element due to hot pressing depend on

reorientation of fibers, in which one of the the ratio of virgin material thickness to formed

dimensional changes is negligibly small as shown thickness. From Fig. 2-a,
in Fig. 2-c.
The present approach requires three assumptions: ta
1. Although the fibers after each of the mate- sinO - - - (2)

rial forming processes mentioned above may not be tb
evenly distributed within the subdomain illus-

'trated in Fig. 2, the fiber distribution density Thus, the stiffness components after hot pressing
iis assumed to be spatially homogeneous for mathe- are given by
matical simplicity.
1 2. The material forming processes mentioned 0
,herein are possible only through the plastic 1 /,
deformation of the matrix material. Plastic strain Cijkl -sine dO d (3)
may not be spatially homogeneous in the matrix 2ifsinJ
material due to stress concentrations near the 0 w/2 -1
reinforcing fibers. Also, it is well known that where

even an isotropic homogeneous material becomes
transversely isotropic or orthotropic after the Cijkl .- Sip ajq akr als Cpqrs (4)

2



A, shown in Fig. 3, the direction cosines, aij, Cy: " (Cit'C1 2i/2 al)can be defined asC6 - lll2/

sinfcoso -cosicoso si When the hot pressing ratio, f, is zero, the
cos2  transversely isotropic material properties studied

*ajj Fsingsin# -cos~sin4 CS (5) b eteo9aercvrda itdblw

L cose sin$ 0 "

- 3(Cl1 +C2 2 )/8 + (C12 + 2C66)/4 (12)

3' /1

2fie - C22  (13)

L/466/ 
31/ (14)

2' C1 3 - C23  - (C1 2+C23 )/2 (15)

C44  - C5 5 - (C2 2 -C2 3+2C6 6 )/4 (16)

I Fig. 3 Direction cosines

C66 - (Cll'Cl2)/2 (17)
Substituting (4) and (5) into (3) gives the five - (CII+C 2 2 -2C1 2+4C6 6 )/8
independent elastic constants after hot pressing
in terms of the thickness ratio and the elastic
constants of a perfectly aligned fiber composite. Christensen4  also predicted 3-D isotropic and

Thus, transversely isotropic material properties of a

composite with randomly oriented continuous fib-

ers. By setting changes in dimensions to zero, i.

C11  C2 2  e. ( - 1, the present approach simplifies to the
3-D isotropic material properties predicted by

C11(3/8 - f2/4 + 3C4/40) Christensen listed below.

+ C22(3/8 + f2/12 + 3f4/40)

ClI - (3C1 1+4C1 2+8C2 2
+8C6 6 )/15 

(18)

+ C66(1/2 + f2/3 -3f4/10) (6) C12 (CII+8C1 2+C2 2-4C6 6+5C2 3 )/15 (19)

C33  - CiIC4/5 + C22(1 "2f2/3 + f4/5) 11-2 Extrusior

+ (C12+2C6 6 )(2f
2/3 - 2f/5) From Fig. 2-b, the stiffness components after

extrusion are giver, by

C1 2  - (CII+C2 2 -4C6 6 )(I/8 - C2 /12 + (4/40)

+ C2 3 t
2 /3 + C1 2 (3/4 . f2/6 - f4/20) 1 -/ '

C13 - C23  Zijkl - w(l-sinO) J J Cijkl sine di d4 (20)

- (CII+C 22 -4C6 6)(4
2/6 - (/l0) Da

+ C1 2 (1/2 C (2/6 + C4/5) cosO - - , sinb - (21)

+ C2 3 (1/2 
- f2/6)

Thus, the effective elastic properties after
E44 - c55 extrusion are given by

C (C1-"2C12)(( 2/6 _ f4/10) C11  - C2 2

+ C2 2 (1/4 + f2/12 _ (4/10) - Cii(8-7r-7C 2+3C3+3 4 )/40

- C2 3 (1/4 - f2/12) + C2 2 (64+I9g+19g
2+9 3+9 4 )/120

I (22)

+ C66 (1/2 - f2/2 + 2(4/5) (10) + (C12+2C66)(16+ +;
2-9 3 9 4 )/60

3



Z33 C C14++2+ 3+ 4)/5 C33 - C11/5 + (4Cl2+BC66)/15 + 8C22/15 (31)

+ C 12 (+86)(I)(2+3 ++3 3)/ 1 (23) -12 - (CII+C2 2 -4C66 )(I - sin4O/40)/15

+ C23/3 + C12(8 + sin4O/20)/15

C12 - (ClI+C 22 -4C66 )(8-7f-7r
2+3r3+3r4)/120 C13 -(CI+C2 2 -4C 66)(I ± s3n2)/20)/15I - C12(-32+13r+13 2+3r3+3r4)/60 (24) C343

+ C2 3 (1+ +f 
2 )/3 

+ C23 (1 T sin2o/
20)/

3

+ C12(8 ± 3sin2o/20)/15

I13 - C2 3

- (CII+C 2 2 -4C6 6 )(2+2+2r
2 .3r3-3r4 )/30 (CII-2C12 )(l • sin2C5/25)/5

+ C2342 .r2)/6 - C2 3(1 ± sin2o/20)/6

5C12(16+)+2+63+64)/30 ( C22(7 ± 3sin2o/20)/30 (34)

+ C66(2 T sin2o/60)/5

. (C1I.2C 12 )52+25+2 3Z3 3 4 )/30 C66 " (CI1 -2C12 )(l - sin4o/40)/15

i2(--r)1 C23/6 + C22(7 - sin4O/20)/30 (5" C23(2-[- 
2)/12 "(35)

+ C2 2 (14-r-r
2 -6r3-6r

4 )/60 + C66 (2 + sin4O/30)/5

- C 6 (-4++~
2-O-4~)/lO(26)

CII. 
Aligned Short Fiber Composite

C66  - G12 - (CII+C 12 )/2 (27) As mentioned earlier, the five independent elas-

tic constants of a perfectly aligned fiber compos-
ite must be known prior to the forming process.The shape of reinforcing short fibers or whiskers11-3. Rollinz has been frequently assumed by a number of
researchers 7 ,8 to be a prolate spheroid. This

In the case of rolling, the fiber reorientation approach is known as the equivalent inclusion
kinematics are slightly different from the above method from which all elastic constants of a com-
cases. Since the thickness ch.ange is much greater posite reinforced by aligned inclusions can be
than the width change, thu width change may be estimated either analytically or numerically. The
assumed to be negligible. From Fig. 2-c, the effective compliances of an aligned short fiber
effective stiffness components and thickness ratio composite, or those of the representative volume
after rolling are then given by element shown in Fig. 1-b are given by

-r 1 M -1 F H

Cijkl ijkl sin$ dO dO (28) Cijkl - Cijkl - (f/2)( Cmnq - Cmnpq x

4J 0 Jo (36)I1 -I -1 -1iM -1

ta( Eijmn Cpqkl + Eklmn Cpqij )
sino - - (29)

tb whereII
The effective elastic properties after rolling F M

'then become orthotropic, resulting in nine inde- ZiJkl " (l-f)( CiJmn - Cijmn )Smnkl
pendent elastic constants given by (37)

M F
l1 +(l-f) Cijkl + f Cijkl
- - CII(3 ± 2sin2#/0 + sin4o/40)/15

I+ C22(8 T 3sin20/0 + sin4O/4)/15 and SikjO is Eshelby's tensot for a prolate(30) spheroidl

+ (2C12+4C66 )(2 ± sin2O/20

sin4O/40)/15

!4



TV, Results and Discussion 12 - LONCITUDINAL

- -- TRANSVERSE
From the present study, the effective elastic Ef=10.5 )si Em=0.47 Msi

constants for aligned continuous or discontinuous .' 10 Vf=0.20 Vm=0.32 L/D=675
fiber composite can be predicted. When the fiber
aspect ratio approaches infinity, eq. (36) gives
the effective elastic constants for an aligned n /

continuous fiber composite. After the effective _ -
elastic constants of aligned fiber composite are a 6-

calculated by eq. (36). the solutions to the sub- 0
ject material forming processes discussed earlier ( /

can be utilized for predicting the material prop- b 4-
erties after each forming process. The solutions /

to extreme hot pressing where ta/tb - 0 can be D /
compared with an experimental result of two dimen- 2-
sional random fiber composite.

The effective transverse Young's modulus calcu- _

lated from eq. (36) is compared with the exper- 0 I-
imental data in Tsai and Hahn

I I , as shown in Fig. 0 .
4. 0.0 0.2 0.4 0.6 0.8 1.0

FIBER VOLUME FRACTION

25-

0 25- ORTHOTROPIC PLANE
D o REF. 11 -- ISOTROPIC PLANE
02 - EQ. (36) 0 Ef=10.5 Msi Em=O.47 Msi

Ef=73.1 GPo 0/ 4- Vf=0.20 Vm=0.32 L/D=675
Em=3.45 GPc 0

Sn Vf=0.22 c D

15- VM=035 3

_____

0 0

Li

< 5- V

0 - J I I I I I 0 I I I I

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIBER VOLUME FRACTION FIBER VOLUME FRACTION

i Fig. 4 Transverse Young's modulus of a 0.6 - - VLT
continuous fiber composite - - VT

Ef=10.5 Msi Em=0.47 Msi
0.5 Vf=0.20 Vm=0.32 L/D=675

In Fig. 5, the effective elastic constants for a 0
composite with aligned discontinuous fibers calcu- 0.--
lated from eq. (36) are illustrated for glass / 0.4
fibers in polystyrene.1 2 The elastic constants V.

shown in Fig. 5 are then utilized as input data Z

for determining the effective Young's modulus of 0 0.3I the same composite with randomly oriented fibers
in a two dimensional domain. Fig. 6 shows the 0
comparison between the present study and the
experimental result of Lee.

12  0.2

The variations of the effective Young's modulus
in the major axis are illustrated in Fig. 7 for an
ideal short fiber composite subjected zo each of 0.1
the three material forming processes discussed 0.0 0.2 0.4 0.6 0.8 1.0
earlier. Consider an extreme case in which the FIBER VOLUME FRACTION
thickness ratio is zero. In such a case the fibers
after hot pressing or rolling become planar. The
material properties after hot pressing become
transversely isotropic, while those after rolling Fig. 5 Elastic constants of a perfectly aligned

remain orthotropic. When the material is subjected fiber composite
to an extrusion in which the diameter ratio
approaches zero, the material properties of a per- (a) Young's moduli
fectly aligned fiber composite are retrieved as (b) Shear moduli

shown in Fig. 7. (c) Poisson's ratios
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2.00 0 REF. 12 dent elastic constants obtained this way can be

- PRESENT MODEL used for evaluating all existing empirical and

Ef-10.5 Msi Em-0.47 Msi theoretical models.
Vf=0.20 Vm=0.32 L/D=675 The present model can be generalized for com-I1.50 bined material forming processes, such as trans-

W verse rolling after extrusion and transverse rol-
ling after longitudinal rolling. In the former

0 case, the I rotation occurs prior to the 0
rotation. Alternatively, the 0 rotation is fol-

2 lowed by another 0 rotation in the latter case.
.0 0Thus, the elastic properties of two final products

b with the same dimension may be different if the
~05Omaterial forming histories are different. In con-

0 0.50 clusion, the entire material forming history of a
composite reinforced by continuous or discontinu-
ous fibers must be known a priori in order to pre-

dict the material elastic response.

0.00 0.05 0.10 0.15 0.20 0.25
FIBER VOLUME FRACTION Acknowledeements
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I ABSTRACT

The Benveniste reinterpretation of the elastic version of the Mori-Tanaka
method is extended to model the viscoplasticity of composites containing voids
and/or microcracks. The matrix unified viscoplasticity ecuations of Mille-
are cast in a total strain formulation to yield the instantaneous tanoer.
stiffness for use in the micromechanics model. For steady state creep, the
composite strain rate is given in terms of the matrix stress rate. initial
yield surfaces are crawn for SiC/Al composites.I

INTRODUCT ON,

Products manufactured by tne sintering or not pressing of metai powoer
are finding increased use due to improvements in fabrication to near-net-shape
and control of density. Filters and bearing cages are intentionally
manufactured with a high degree of porosity. Conversely, load bearing powder
metallurgy products such as superalloy turbine blades ant SiC/aluminumaircraft szrJctures require the highest possible densification.

Constitutive equations describing the elevated temperature behavior of
reinforced porous metals are needed to enable their efficient production and
service. The high temperature behavior of metals is best described by unifiedI viscoplastic constitutive equations [Miller (1987), Walker (1984), and Bodner
(1984)1. The unified equaticns combine plastic and creep strains in a single
inelastic strain, and the models do not utilize a yield condition or delineate
regions of purely elastic deformation. The constants in these unified
equations are obtained from creep, monotonic tension, stress relaxation and
cyclic tests. When the composite is modelled from a phenomenoloci cal
perspective, this zest regimen must be repeaed for eacn comb-ination of
reinforcement and void morphology and volume fraction. A more efficient
approach is to obtain the constants for the neat matrix from a single set oftests. The matrix constitutive equations could then be used in a
micromechanics model to predict the overall composite behavior for various
combinations of inclusion morphology and volume fraction.

At a representative material point, micromechanical constitutive
modelling requires the solution of a localization boundary value problem

followed by a homogenization procedure. The phenomenologi:a approach tconstitutive modelling is therefore computationally more efficient than themicromechanical approach. As the macroscopic history and rate dependent
response of porous composites is not intuitively simple, a micromechanical
model may be used to provide insiaht into the proper form of phenomenological
models.

Due to the second phase reinforcement, voids, and microcracks,
phenomenological composite constitutive equations should account for pressure
dependent anisotropic flow even thouah the matrix may be inelastically
isotropic. A number of phenomenological models have been Drooosed for meza-matrix composites. Dvorak and Rao (1976) deveiooed rare-inoeoendenz haraenincand flow rules for a comoosite consis-ing of a non-harceninc matrix reinforcec
wi:h continuous elastic fibers. Tno oredic-'.c oastc claza:ion was c1 -n=
sawre croer maon-:uoe ar tnee: :;a:aai.. a. c :r
ween:cniee. !:e ee§..m~nc t6

I



I

based unified viscoplasticity theory for transversely isotropic, fully dense
composites. In both of these studies, the inelastic strain rate was obtained
from normality to a macroscopic yield function or its rate-dependent analog.
For porous metals, however, the inelastic strain rate is not generally normal
zo the phenomenological yield function. The oroblem is then complicated by
the need to identify both a dissipation function and a yield function.
[Nemat-Nasser and Shokooh(1980)].

Micromechanics models have also been developed to predict tne inelastic
Denavior Of composites ano porous metric. Cnu anz _sn- i ; aecI composite spneres assemblage" mooe, to Dre-i:t zne DLI. moouius Of Szra -

haroening metals containing either elastic particies or cavities. Tne results
indicated that plastic macro-dilatation was not sicnifican: for elasti:
particles, but was very significant for porous metals. The Mori-Tanaka (1973)
extension of Eshelby's (1957) equivalent in:lusion method has been used tc
model rate-independent plasticity [Arsenault and Taya (1987), Tandon and Weng
(1988)] and creep [Zhu and Weng (1989)] of metals reinforced with elastic
particles and whiskers. All of these micromecnanics methoos mace use of
deformation plasticity theory to model the matrix. A "vanishing fiber
diameter" model has been developed by Dvorak and Bahei-El-Din (1982) to
predict the mechancial behavior of a kinematic-hardening, rate-independent
matrix reinforced with elastic fibers. More recently, Dvorak and Bahei-El-Din
(1987) developed a "bimodal" plasticity theory for fibrous composites with
non-hardening matrices. The composite response was described in terms of
either a fiber-dominated mode or a matrix-dominated mode. Aboudi (1967) has
predicted the response of composites consisting of metals, described by
unified viscoplasticity equations, containing elastic reinforcement and
voids. The method is a simplification of a non-classical, or "continuum with
microstructure" type model introduced by Sun et al. (1963) to study wave
dispersion in laminates. The model was subsequently extended zo model fibrousI composites by Achenbach and Sun (1972).

Apparently, no "effective modulus" (defined in the sense of Hashin
(1983)) micromechanics theory exists to predict the mechanical resnonse of
unified viscoplasticity-type metals containing particulate elastic
reinforcement and/or voids and/or microcracks. This shortcoming is in par:
due to the complicated nature of the composite inelastic deformation. Due to
second phase reinforcement, voids and microcracks, metal matrix composites
have low ductility. The matrix constitutive equations must therefore account
for both elastic and transient viscoplastic deformation. Also, inelastic
deformation can alter the symmetry of the matrix stiffness, and macro-
proportional loading may result in micro-nonproportional loading. Therefore,
the present research has been undertaken to develop a model with the
aforementioned capabilities. First, a micromechanics model is developed by
extending to viscoplasticity Benveniste's (1987) reinterpretation of the
elastic version of the Mori-Tanaka (1973) method. Next, the matrix unified
viscoplasticity equations of Miller (1975) are cast in a total strain
formulation suitable for use in the micromechanics model. Finally, the
composite constitutive equations are presented in the unified form.

Although the presence o-. the reinforcement me;\' leat -:, sionifican:
material strengthening of the in-situ matrix [Taya anc Arsenaul: (1929, ne

resent analysis 4s :oncernec cnmv w -r na :nase .r
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II. MODEL FORMULATION

In the present study, the Mori-Tanaka method has been used tc develop a
mean field micromechanics model of a Particulate reinforced metal matrix
composite. The model is applicable at hign nomologous temperatures. The
reinforcing particles are assumed to be linear elastic. Nonlinear composite
behavior results from the viscoplastic character of the matrix material.

A. ~a~:.x Conszitutive
The originai unifiec viscopoiastici y tneory -

reproduc .-: in Table 1. Althouan more recent and more accura7_e vetra:ns cf
Miller's (1987) model are available, the simple original equations are bezter
suited :o elucidate the phase interaction in the composite. bThe evolution law
for the kinematic hardening variable, or "back stress", Cij is similar to

the familiar Bailey-Orowan form of szrain hardenin: and -tatic (thermal)Irecovery (softening). The evolution law For the isotropic haroening variable,
or "drag stress", D includes a aynamic recovery term. The back stress and
drag stress are coupled in equation (1.4). The back stress is constrained to
be purely deviatoric.

Table i. Summary of the Miller Constiiuzive Theory

(C -1 a (1.!)
= ( kl) k Eij

.i 3 "i' b ;ii T b - (Oi  - ij) --

b
b b bnb

(bi
=  i- 1 j HBe[sinh (A1.32c

-b A 2 3  (34)
H2

l (C2 A, 2 2  nh(A2D)ii B6 - 1 D3 i CBns n !

I ~ ~ 41 =( ij ij in D ] .5

- 3cb b, h
(oC j)(.6

I
I ' b ) b b

- 2 :i i ij -i)(ij - ij)] i7

A=expi 0 R Jm l n(O.E-Tm / ,T" - l!" for " C.. -

0.6 RT-m M

= X: ' ---:-' - - - " .
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At high homologous temperatures, the inelastic behavior of metals can no
longer be described in terms of the yield function of classical plasticity.
However, surfaces of constant inelastic strain rate, or SCISRs, formulated in
stress space, have been shown experimentally jBlass and Findley (1971)) aner
analytically IRobinson (1985)] to serve as a viscoplastic analogy to the yield
surface of classical plasticity. That is, the SCISR is a flow potential for
the inelastic strain rate. The inelastic strain rate in Miller's model can De

derived from a comDined hardenino tyDe Doten~ial.
( - ' I ( -. .

Thus, equation (1.2) is analogous to the flow rule cf classica, pias: ci::.
I aF

*13-o (5)
ij ai

I We make the usual assumption that the back stress is initially zero anc
the initial value Do of the drag stress corresponds to the 0.2% offset "vield"
stress in a uniaxial test. In classical plasticity, inelastic deformation
does not occur until the stress state reaches the initial yield surface. From
inspection of the flow rule (1.2) and the equivalent inelastic strain rate
(1.5), it is apparent that inelastic deformation begins concurrently with the
applied stress. The inelastic strain rate is negligible, however, if the
effective stress is small relative to, the drag stress. Also, due to static
recovery, the inelastic multiplier x is not generally equal to zero for
tangential, or neutral, loading in the deviatoric plane or parallel to bthe
hydrostatic axis. in fact, inelastic flow will occur unless c ij 0.1 j

Unlike the yield surface of classical plasticity the SCISR is free to contrac:

I as well as expand.

The stress state must lie on the SCISR at all times. By differentiating
(4) the consistency condition can be written as

b6 2-aii 3D (6)
The hardening rule (1.3) is similar in form tobPrager's rule of

kinematic hardening. Indeed, at low temperature and o , recovery is

negligible, and Prager's rule of linear kinematic hardening is recovered.
Although Prager's rule is physically correct, it is not geometrically correct
in all stress subspaces. Fortunately, Prager's rule is geometrically correct
for a number of matrix stress subspaces corresponding to technologically
relevant composite loads. For the micromechanics analysis, consider the case
where the inhomogeneities are aligned along the specimen principal axes, the
composite loading is along the principal axes, and no shear tractions are
applied. One possible configuration satisfying these constraints is shown in
Figure 1. Under these circumstances, the average shear stress in the matrix
is zerc. Praaer's rule is correct in a stress 6-soace free cf shear. in
fact, tne soecimen axes now coincide with the DrinciDal axes of ma:rix stress.
and ?rager's rule is correct in :nE suosoac= cf o rnci6 stresses wnen :neI

I
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I.
Equations .(3) thru (6) enable the derivation of the instantaneous

stiffness corresponding to

Lijkl (7)

Following the derivation in the Appendix, we obtain
aF @F

''v BF ?F Ccrkl

I U\

wnere

* .I

B C O° aF aF aF __F

C Cm cmn m mnop c ()cst st in mn OD

At small inelastic strain, Miller's model predicts primarily kinematic
hardening. Thus, because metal matrix composites have low ductility, we
predict predominantly kinematic hardening of the in situ matrix. It is well
known that kinematic hardening may induce inelastic anisotropy. in a complete
elastic-plastic stiffness such as (E), iSotropic hardening induces anisotropy
in the instantaneous stiffness. Deformation theory does not usually account
for development of anisotropy.

B. Micromechanics

In order to extend Benveniste's (1987) reinterpretation of the elastic
version of the Mori-Tanaka (1973) method to viscoplasticity, we relate a
history of the two phase self-consistent scheme. The use of the self-
consistent method to predict the "effective", or overall composite, stiffness
of elastic-plastic matrices reinforced with elastic inhomogeneities has
evolved along two paths - - the "equivalent inclusion method" and the "direct
approach." For comprehensive reviews, see Mura (1982) and Hashin (1983),
respectively. As originally formulated by Eshelby (1957), for dilute
concentrations of inhomogeneities, the equivalent inclusion method makes use
of an "equivalency condition"

I 0i + C p 0 p *
ijkl(fkl + + Ckl) :- Cijkl(Ckl + + k1 - ckl) (10)

The reader should note that in the above ecuation and in the remainder of the
paper superscripts denote qualitative description of the associated variables,
whereas subscripts represent tensoriai components. Thus in (10)

ijkl and C ijk denote the elastic stiffness of the inhomogeneity and
matrix, reseCtively, C is tne far-field strain. . the strain in
the inhomoaeneiPv. C i the matrix olasi s-rn. anc : ,- is :ne

"eauivalen: transformatio r-'-' :- ei n.' t I.
,esul: was :na: unz- -- -- --

I
II
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inhomogeneity embedded in an infinite matrix under uniform strain ckl and

uniform plastic strain Ekl The method was subsequently extended by MoriIk"
and Tanaka (1973) by including a "back stress" analysis which accounts for the
mrutual interaction between inhomogeneities. Composite elastic and plastic
hardening moduli were obtained from energy principles. The Mori-Tanaka back
stress analysis has, in turn, been extended by Taya and Chou (1981) to include
two types of inhomogeneities.

As poinzec OU: Dy Hii (!965a In niS sei -c n S ,,: Sica 'z C0
polycryszalline plasticity, :ne ma inst-ntaneous s,:,,nes. r =:ner tna
the elastic stiffness, should be used in tne solution of :ne "aL :iliary
problem" of a single grain embedded in an elastic-plastic matrix,. Fciowin:
this recommendation, Tandon and Weng (1988) corrected the Mori-Tanaka methoc
' replacing the elastic stiffness Cmijkl in equation (10) with the

Lmistnandus tifnssL m

instantaneous stiffness L and removinc the plastic strain ck from the

equation. The resulting equivalency condition in the incremental form is
* i o Lm. 0 -

Cijkl(dckl + dkl + dkl) = jkl (dc + d + dkl - dk (11)

where d kl is the increment of the Mori-Tanaka "back strain." We note that

the Mori-Tanaka formulation for an elastic matrix is recoverec if the

instantaneous stiffness Lim  is replaced by the elastic stiffness Cmijkl ijkl"

I Following Hill (1963), we write the "direct approach" zo the comoosite
elastic stiffness rijkla as

C Cm {C . m )A (12)

ijkl ijkl + c ijmn - C ijmn mnkl

where ci is the reinforcement volume fraction and the brackets denote the
orientation average. The composite elastic stiffness can be obtained
following the determination of the orientation dependent "strain concentration

Ifactor" Aijkl, which gives the average inhomogeneity strain in terms of the

uniform composite strain. The determination of A is the essential
ijkl i h seta

difficulty in the micromechaiMcs method. For dilute concentrations of
inhomogeneities, the tensor Aijkl= Tijkl can be obtained from Eshelby (1957)

*as

Tm )i C Cm (
ijkl=[lijkl + Sijmn(Cmnop) (Copkl okl) ]- -  (13)

wnere Sijmn is the Esheiby tensor, and iijkl is :ne icentity tensor. For a
non-dilute concenraioi, of innomocenei1is. :ne strair :oncentration :enscr
souic oe cerivet r manner wnn Z _

in:eraci%-. I 'I _ on-aine: suc- a 0, n _. 7 ei S

I
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approach" to the self-consistent scheme for two-phase composites.

The Eshelby tensor is a function of the particle aspect ratios and the
instantaneous matrix stiffness. Mura (1982) has given single integral
equations for the Eshelby tensor corresponding to the case of a transversely
isotropic matrix with its crystalline directions coincident with the principal
directions of a spheroidal inhomogeneity of any aspect ratio. For the case of
a generally orthotropic matrix containing spherical innomogeneities, Morris
(1970) has given double inteorals for the Eshelby tensor.

T oroe- tc use Mura's in:ecra'! s or Zne :neiD\ _ tCr . n
innomogeneities are assumed tc ne alignec in the x, direcicn. Tne
macroscopic loading is constrained :c render tne nstanzaneu . matri :Istiffness, at most, transversely isotropic about the x3 axis. This condition
is not overly restrictive, as it allows for the application of hydrostatic
pressure and combined tension/torsion, and triaxial stress states in which
611 622' 633 = 0.

Recently, Benveniste (1987) made the remarkable obsgrvation that the non-
dilute strain concentration tensor could be obtained from a reexamination of
the elastic Mori-Tanaka method in terms of equations (12) and (2.3).
Benveniste et al. (1989) subsequently extended the analysis to predict the
effective elastic stiffness of composites with two types of inhomogeneiies.
Recall from equation (11) that the elastic-plastic form of the Mori-Tanaka
method is obtained by replacing the matrix elastic stiffness with the
instantaneous stiffness. Therefore, the elastic-plastic form of the
Benveniste e1, al. (1989) method can be written in terms of instantaneous
stiffness i1  k In the remainder of the paper, eouations will be cast in

rate, rather than incremental form. Under an applied uniform s,rain rate

.ij the composite instantaneous tangent stiffness Lijkl is given as

IL = [z c L T [: c r Tr  (14
ijkl ijmn mnop opkl!

where r = 1 denotes the first particle type,r = 2 denotes the second particle type, and
r = m denotes the matrix phase.

The average phase strain rates are given by
.r =Ar .0

Sr A r k.0 r =1,2,m (15)

Ior ii ik k1
r -r .m
fj ijkl ckl' (6)

wnere the ma.rix strain r.- r terms c: the anc" ' ec strair r-.=
as

I
I



L cr T' i .0 r1,2,m (17)Ti r iJkl klr

The dilute strain concentration tensors Tr are given in the form
i jkl

r r m 1 r 'm, -
ijkl ijkl +Sijmn(Lmnop (18

T
M  

T t10

'ijkl = ijkl

wnere :ne fourth-order unit tensor is cefined ov

- -- r" _  i2 ,

Similarly, unaer an applied traction giving rise zo a unifor,,, stress rate
.0
US the composite instantaneous compliance Mijkl (= - ijkl )  is given as

Mik = crM r  r crw(21)

ijkl ijmn Wmnoo opkl] - , r=!,2,m
r r

with.r :r .o

i ijkl kl' r =1, 2, m (22)

or
.r = Wr .m (3
a iij ijkl Ckl' r = 1, 2 (23)

where the matrix stress rate is written in terms of the aoolied stress rate

ij as

Scr r - .oI [z c'W *kl' 0kl, r = 1, 2, m (24)
r

The dilute stress concentration tensors are

Wr jk r Tr  m 25ijk :ijmn mnop Mopkl' ,2,m(5

Substitution of equation (9) into (14) results in

ijkl = lijkl (26)
For a given composite stress rate o j, the composite total strain rate

.ICij follows from the composite compliance M ijkl equation (21). The
micromechanics leading to Miikl is based on the fact that the composite

total strain rare is equal to the volume average of The phase total strain
rates. As pointed out by Hill (1967), the elastic and inelastic components ofthe composite total strain rate are not dire:- averaces of tneir microscopic
counterDarts when the composite stress rate c_ maintains inelaszic flow in
an elastically enrogeneous medium. ine comoos Ie ine aszI: strain !Synically on:ainec from ar eias:- oain: euatrs ., :n . Be a s n= u74 -fi ce zuE: onz
co n: Alow -or -ecions - urv easti: cefcrma:,cr v V  : -:n.sice - on'
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imaginary "instantaneousu elastic unloading. In other words, we assume that
during the infinitessimal period of unloading static recovery has insufficient
time to induce inelastic flow. ith this assumption, we associate with eachreal state an imaginary elastic state of zero apliec stress. The comoositeinelastic st in rate is then given oy

IMjkl- (Cijkl) (27)

tne comos:e comDan:e . "-U o Tj ev :e!.
inei=z:ic ::rain as tne volume averace c, r sne -

concentration factors and the phase ineiastic s:ra.ins. Wrer ineias-: 7;.,
occurs only in the matrix tne reslt iS simp> ,,

Z 1= c mS.m M (26)ij : ijkl ckl

I The proof follows from the decomposition of stra4n ano tne equivalence of
micro and macro virtual power, also known as Hill's Macronomogeneity Equality.

The model accounts only for the particle volume fraction and not the
individual particle size. We make the implicit assumption that the individual
particles "see" a statistically homoQeneous polycrystalline matrix. SiC
whiskers of 1-2 u diameter, however, are embedded within single grains.
Walker and Jordan (1989) have developed unified constitutive equations for
single crystals. The inversion of single crystal equations to the total
strain form may be of limited utility, however, due to the presence of
multiple corners on a single crystal SCISR. Fortunately, conzinuous fibers of
50 im diameter may be a: least one order of macnituoe laroer than :he

surrounding grains (Kim et al. (1989)]. But tne Mori-Tanaka metnod may nave
limited applicability to typical continuous fiber reinforced metal matrix
composites, which are often no more than eight plies thick. In this case, the
fiber diameter is of the same order of magnitude as the composite thickness.
The rigorous form of the micromechanics may not then reduce to the simple
common Form (see, for instance, Mori and Tanka (1973), the appendix).

The model presented herein provides the mechanical equation of state for
the comoosite and the orowth law for the comoosite inelastic strain. The
damage state is treated as known. The Mori-Tanaka method has been used [Taya
(1981)1 to obtain tne strain energy release razes of cracks in elastic
composites. The concept of strain energy release rate is of limited utility
for bodies beyond general yield. Also, proportional macro-loading may resultin non-proportional micro-loading. The J integral is therefore no-. useful for
calculating microcrack strain energy release rates.

The Mori-Tanaka method has also been used [Taya (1981)] zo study ductile
void growth in viscous metals. Ductile void orowzh is orimarily a finite
deformation phenomenon and is of limitec consecuence 4-, composites. 'n-eet.

exeriment:l studies of SiC reinforcec aluminum- comoosi:es indicate tnat n:measurable increase of oorositv occurs in ioadinc r lure KTo anz

I
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Di III. RESULTS AND DISCUSSION

A. ComDosite Hardening Eauations
The composite inelastic strain rate can be obtained from a composite

SCISR in oij space. Hill (1967) nas identified the constraints on the
composite yield function in terms of tne constituent yield functions. For the
simple case at hand, overall yielding occurs simultaneously win maetri
yielding. Furthermore, the composite yield function is smooth and conve:., ancthe macroscoic plastic strain incremen: - in tine direc:or- f t, ouwarc..
norTla I.

or.Sstituion f (22) -n::z natr : e.
in composite stress sDace:

F i me o me o D 2 (2)2 ij kl )  ijuv uv - O
where Bme is the elastic stress concentration tensor. in defininc theijkl
initial SCISR we make the usual assumption that the back stress is ,ni:iallv
zero and the drac stress is of initial value D0. The concentration tensor

B kl induces a rotation and an anisotropic expansion of the SCISR. The
SCISR (29) is the equation for an ellipse in the deviatoric plane, and the
initial SCISR may now exhibit pressure dependence. The stress concentration
tensors are defined in terms of stress rates, whereas the SCISR is defined inspace of current stress. A simple substitution such as (29) will thereforenot enable the determination of subsequent SCISRs.

Dvorak and Bahei-El-Din (1982) have derived composite kinematic hardeninc
rules for fiber reinforced kinematically nardeping metals. We use this metzoc
to ootain the macroscopic Dack stress c;. The back stress Z:

iJ
corresponding to a yield function has a different meaning than the Mori-Tanakaback stress cij" The Mori-Tanaka back stress is given by the difference of

the applied stress and the resulting matrix stress as

- m 0ij
oij -o =.(30)

or, usino (22),

Theij = ( ijkl - lijkl) 0k1" (31)
The Mori-Tanaka back stress will develop under purely elastic loading, whereas
the back stress responsible for Jinematic hardening -ives the yield function
translation due only to inelastic flow.

The location of the SCISR in comosize stress space is iven by ci.
The back stress raze cEi is obtained by subtractinc zne elastic resoonse
from the :o:ax resoonse. 70- instance. cur4nc : ime t: Weload Cz Z oliowec inTnediale'V oy ar - : ', . .n.oe- elas:.C.- - . .... arc.. . anc --nee : *o - as 4-

c a
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m will not return to its pre-load-cycle value. The resulting matrix residual
stress increment is

r = m me
oi. (. ijkl - Bijkl) d (k3l

:.- composite and matrix SCISR translations cue tc tne : o. inoremen: are
related by

m dc- = c . .

S us, :ne coposite oa ciK ,res -s = e c een : ey-. - -7l :

.aroeninc stress dc; anc :ni menan,~. naroening -:4 0 J

constraint hardening. If the innomogeneities are voias, do0i is L

mechanical softening stress.

The composite back stress incremen: :s civen oy (31; an: !32',

B me (Bme - b Dme M -0_m Tdoik 1 = -ijkl) o - [ jkl)- juv i kluvI dc U

The incremental equation (34) may be rewr t -'en ;" r=+O

.B = (Bme )- [b Bme - Btm  (35)
k ijkl i -  ijkl )  ijuv - kluv uv

ihe evolution of the composite back stress is thus seen to aeDent exoicl:'.
on the evolution of the matrix back stress anc the applied stress rate.

B. Comoosite Creed Ecuations

During creep or stress hold (strain transient) tests, the composite

stress is constant, i.e. ai. = 0. and the composite strain rate cannot be

determined by the compliance (21). Also, the phase stress rates cannot be
determined from (22). The composite strain rate must be obtained from an

equation relating i 0 directly to the matrix stress rate. To derive such an

equation we begin with the composite stress/elastic strain equation

Ic .0 1 0 .oi .oi 36k l I (r'k lu v ) " v V ckl (36kl

I Substitution of (28) yields

.o .07 = mM .M!"-

11 = EklI kluvuv

Nex:, we SUDS:izue ecuation '- ::

• - K-r . j - - .- : -
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Now decomposing the mat.rix strain rate and making use of the matrix elastic
compliance,

1: (,Jie .m . m, m mI
r ijkli ijop Oop cij' kluv 'uvI r

We solve for the matrix stress rate as

ra r

The ma:rix stress rate may De vre--t :n trms cf :ne t £:,.. ,e
as

rop [ cT r EMm. c-TL kl (c K . - .0 "j, Vlmjop ckluv -, [ ucTvkl] ( stuv ) -st
r r (41)

Equation (41) gives the matrix stress rate in terms of material hardening
(softening) and constraint hardening (softening). The composite creep
response cor.trasts sharply with the creep response of the in situ matrix.
From (37), (40) and (1.2) it is apparent that constraint hardening precludes
composite steady state creep if the matrix is undergoing steady state creep.
A composite may obtain a steady state only when the sum of void-induced
constraint softening and matrix thermal softening equals the sum of
reinforcement-induced constraint hardening and matrix strain hardening. Under
steady creep conditions, a SCISR is fixed in stress space, i.e. it does no:
translate, rotate, or expand (contract). interestingly, a fixed matrix SS
will generate a dynamic composite SC!SR.

The "fading memory" of neat metal SCISRs has been experimentally verified
by Blass and Findley (1971) and analytically modelled by Robinson (1985).
Fading memory implies that, regardless of mechanical history, a metal will
eventually reach a steady state flow rate unique to the current fixed stress
state. The concept of a unique pairing of the stress and steady state
inelastic strain rate is the foundation of Hart's (1970) framework, upon which
Miller's model is predicated. Fortunately, the composite will exhibit fading
memory. Recall that our model assumes all innomogeneities to De separated by
a continuous viscoplastic matrix. Furthermore, stress fields are uniform in
the inhomogeneities. Therefore, residual stresses in the inhomogeneities mustbe balanced by residual stresses in the matrix. The matrix exhibits fadingmemory with respect to the deviatoric component of residual stress, which will

eventually totally relax through static recovery. Equilibrium then demands
total relaxation of the inhomogeneity residual deviatoric stress. Inelastic
incompressibility of the matrix precludes the existence of residual
hydrostatic stress.'

I
- We cc rz consi der :herma resi'a stes
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U Recall that the inhomogeneities are aligned in the x3 direction. For
macroscopic axisymmetric loading the initial yield surfaces of SiC (E=430 GPa,
v=0. 2 ) reinforced aluminum (E=63 GPa, v=0.33) composites are shown in

Figures 2 and 3 for 20% and 30% reinforcement volume fraction, respectively.
The a'.:-mmetric transverse stress is diver as

-o 0 (42)01 = , (oI+24

For soherical reinforcement, the yield surface is a cyiinaer aligned alonc tne
nycrcs:P:: ;:> or wns :ers an: -FiErS. :ne ~:n~r~: r
ci.re:--ior o- re.n orcemen an: 4s roa an e]i.sen tn -eva:n--. T n.
yielc surfaces correspondinc to wnisKers anc fibers cz n:- differ
subs tantially. The surfaces take the shaDe of a cviinaer oecause tne matri>.
is modelled only in terms of an average stress. Dvorak and Banei-EI-Din
(1979) have used the modified self-uonsisten: method to obtain yield surfaces
for fibrous composites with non-hardening matrices. in that case, the yield
surfaces were elliptical in the axisymmetric plane because the modified self-
consisten: method allows for two different (out uniform) matrir stress
fields. Therefore, we expect the Mori-Tanaka method to predic- an

* unrealistically large elastic region for large values of hydrostatic stress.

For macroscopic plane stress, the initial yield surface of a 50x toron
fiber (E=400 GPa, v=0.2) reinforced aluminum (E=72.5 GPa, v=. 331)
composite is shown in Figure 4. Also shown are the yield surfaces predicted
by the matrix dominated mode (MDM) and the self-consistent fiber dominated
mode [FDM(SCM)] for the bimodal theory of Dvorak and Bahei-El-Din (1987). For
B/Al the bimodal theory has been experimentally show to poredict Extremely
accurate results for plane stress loading in the c32 - c33 and c32 - c22
planes. Apparently, the Mori-Tanaka method unaeres:imates zne yield strenctn
of fibrous composites. This conclusion is supported by Figure 4 and also
Figures 2 and 3, which indicate little strengthening of the fiber composite
over the whisker composite. For whisker and particulate composites, however,
the Mori-Tanaka method should predict more accurate results than the bimodal
theory.

The rigorous theory of "effective modulus': elastic micromecnanics
involves the exact solution of a localization boundary value problem taken
over a representative volume element. The resulting microscopic field
variables are then transformed to the macroscopic values throu a sutable
homogenization procedure. Usually, the localization problem must be solved
using the finite element method. Micromecnanics models were developed to
provide physical insight and predictive capability using approximate methods
of localization and homogenization. In general, these methods involve exact
solutions to elastic boundary value problems formulated over an approximate
representative volume element. For example, the localization problem in the
Mori-Tanaka method is the "auxiliary" problem of Eshelby's "equivalent
inclusion" solution for a single ellipsoidal inhomogeneity in an infinite
matrix. The approximate localization scheme in the Generalized Self-
Consistent Method [Christensen and Lo (1979)] involves tne solution to a
concentric spheres or a concen'.ric cylinders prooiem. Uinforcunately, ".he
properties of history dependent materials vary with s:raln. Exac- solutions
cannot De ootainec for " oca)zaor, roo ems invc'vinc ine.as-lcaiy naroenir-
r-I e ra i .s
_Esnl;" --.- vaer-: in-,,usio' r: mere;, a E.:scxima:-i .on.I
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I In a recent comparison, Christensen (1990) determined that the
Generalized Self Consistent Scheme is qualitatively superior to the Mori-
Tanaka method. It was shown that the Mori-Tanaka method involved no solution
of the basic particle interaction problem in the non-dilute case, and the
method is essentially "an estimate of the solution form ouided only by -he
requirement of the dilute solution at one end of tne concentration scaie and

at the opposite end of -he scale by the reauiremen: thnat as C - , thne
effective property identify with that of the inclusion phase." Inthe dilute
:i: as - C :ne Mori-Tana :a me:noc :aKes tne cr o S _sne loY me.,- C ,

P.SUMMAP'.
A micromecnanics model for tne viscopiastic benavior of a metal matrix:

composite has been aeveloped. The comDosite consists of a thermoviscoplasZic
matrix reinforced by linear elastic particles. Voids are also included in the
analysis. The micromechanics model has been used to develoD constitut*, ve
equa:ions for the composite.. Specifically, strain narcening equations anc

initial SCISR for the composite have been obtained., In addition, tne
micromechanics model has been used to generate equations describing creep of

the composite.

The micromechanics model presented herein provides a general framework
for predicting composite response based on constituent behavior. For examDle,
while Miller's unified thermoviscoplasticity theory was used to describe the
thermomechanical behavior of the matrix in the present study, other
constitutive theories could have been used. in the future residual stresses
due to thermal expansion mismatch iII be included and the analysis extended
to predict thermoviscoolaszic resoonse 07 tne comoosit.
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u---i tuze t:ne z:t ss/elastjc strain equat ion (3) and 0he rul :* the consistency condition (6) to obtain

C 'ijkl(Ekl ; - C.:kl c.

I Rewrite the flow rule (5) as

CC C

and suwstizute into (A.1) toc:0i
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UNow assume that there exists a scalar C such that

aF (6i _ - ) 0 (A.6)
-o.. •.
.1J

Substitute (. " in-.o (A.5) 0o Obtain the instantaneous !.anoen-. s-Zif" e:
,.ensor

Im  =V B . b C1 or crkl

-ijkl iikl .C F ;r F ,9

C -

------ ------ ------ ---

BC Ir, BC M." , m on BO,

The scalar C may be obtained from (A.6) and (A.2) as

. aF . T.
I I; S-1k = Sij1

0,
I nz

in n ino

Th clrCmyb bane rm(.)ad(.)a
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I ADDENDUM

Three papers directly relevant to the present research were presented atI the recent IUTAM Symposium on Inelastic Deformation of ComDosite Materials.Rensselaer Polytech11nic Instzitute. Tro,', N.Y.. 293 May-' june. 199C.

The "vanishing fiber iaineter model" of Dvorak and Bahei-EI-Dir (12)~
was used by Krempl and Yeh t.- predict thermal resica& stresses in unifie:c
viscoolasticizy type rietal matrix.

.anc an: m nooe ;Ci :e a: .-. .

usino a comoina:41on of Esnelbv,_ ecuivalen: -.n:us n . 1,rone-r: -
constraint', tne Mlor'-Tenala mtoan, u an: 1ien: 1: : C7
three-pnase cylindrically concentric solid.

Dvorak et al 4 presented research tnat is similar to the present
paoer. The Mori-Tanaka method was used to Dredict comoosite vield surfaces
ano composite st6ress-strain curves for t..jand SiC,-.1, COMOOS41ZES.
alumn.um matrix was modelled roy a rate-independen:t ncrementai.rpt_:t
theory using the Phillips kinematic hardening rule. The authors pointed out
that LEshelby's "ecuivalent inclusion" solution is not exact for aplastically
hardening matrix.* A more complete paper ILagoudas et-! al. ~Ihas nern

submitted for publication. In additi4on, Gavazzi and Lacoudas 6have develope'tI a numerical algoritnm for the evaluation of Eshelby's tensor corresoondina toa generally arisotropic matrix containing inclusions of any aspect ratio. ineauthors have offered to provide a copy of the code via electronic mail orI floppy disk.

- KremDi, E. and Yeh, NJ.M, "Residual Stresses nroosMa atiThermoviscoplastic Analysis," RPI Report MML 90-3, Marcn 1990.

Wang, Y.M., and Wena, G.J., "A Local-Field Theory for the Overall CreeP o
Fiber-Reinforced Met.al Matrix Composites"

Dvorak, G. 3., Gadvdzzi, A.C., Lagouoas, D.C., an:- kioan, H.. "--iastooiast-:
Behavior of Metal Matrix Composites Based on incremental Plasticity and3the Moni-Tanalka Averaging Scheme"

Lagoudas, D.C., Ga3vazzi, A.C., and Nigai, K., "Elastoplastric Benavior of
Metal Matrix Composites Based on incremental Pla-sticity and the Mori-
Tanaka Averaging Scheme," submitted to the journalofCruaioa
Mechanics, June 1990.

6 Gavazzi, A.C., and Lagoudas, D.C., "On the Numerical Evaluation of
Eshelby's Tensor and its Applica-tion to Elast.oolastic Fibrous Comoosites,."
In D-int, journal of Computational Megnanics.
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I APPLICATION OF CURRENT UNIFIED VISCOPLASTIC
CONSTITUTIVE MODELS TO HASTELLOY X

AT ELEVATED TEMPERATURES
by

L.D. McCrea, P.K. Imbrie, D.H. Allen
Aerospace Engineering Department

College Station, Texas 5123

I ABSTRACT

The unified viscoplastic constitutive theories of Bodner and

Walker are investigated to determine their predictive capabilities using

experimentally obtained data for Hastelloy X, at 1100 and 1700"F, as the

basis of comparison. Material parameters for these models have been

obtained using an 4terative approach, unlike the traditional e-:lDicit

approach. instead, the nonlinear form of the constitutive equations are

numerically integrated using physical incite, as well as knowledge of the

parameters, until acceptable values are obtained. The iterative method for

determining the material constants is shown to be a viable alternative.

proving to be much simpler and less time consuming than previously

developed procedures.

Comparisons to experimental data reveal that the constitutive theories

are not able to simultaneously model the initial and fully saturated

condition for a material which has undergone a considerable amount o:

-- cyclic hardening, although, a power law based strain rate equation is

shown to model this material system best overall.

I
I
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U INTRODUCTION

Over the last several decades, technological advances in areas such as

gas turbines, rocket engines, solar energy conversion devices, nuclear

reactors, and the like, have forced engineers to reevaluate traditional

methods of structural analysis. This, in part, is a result of attempting

to make better use of natural resources through improved design and

fabrication techniques, in addition, materials used in the aforementioned

applications are exposed to hostile thermal environments where temperature

and rate dependent phenomena are sinificant. To this end, a number of

. -ified thermoviscoplastic constitutive theories havc been developed -hith

accurately predict the response of a material subjected to thermal and/or

mechanical loading. However, use of these models is still not commonplace

I and additional research is necessary in order to understand their full

potential, as well as their limitations.

The purpose of this research will be to assess the viability of an

iterative approach for material parameters evaluation, as well as to

perform a qualitative and quantitative analysis of the predictive

capabilities of the models proposed by Bodner [1] and Walker [2].

Numerical simulations from selected theories in uniaxial form, and exper-

imental data using Hastelloy X, will provide the basis for the evalua-

* tions.

SELECTED CONSTITUTIVE THEORIES

The constitutive theories chosen for this investigation are those of

I Bodner [1,3-15] and Walker [2,13,14,16,17]. Selection was based upon

several considerations, namely: 1) these models have been scrutinized very

catrer "- "  
1 - 4: Z-era:, .. =.. are no : zonsidere- ' -s
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I 2) these models have been previously used to model the behavior of

Hastelloy X; 3) parameter evaluation schemes are more readily available

for obtaining "initial" estimates to the matcrial constants; and 4)

continued development of these models requires a thorough understanding of-

their full potential, as well as their limitations. Thus, in the

paragraphs that follow, a brief overview of these theor.es is presented

which will include a discussion of their forms and general

characteristics. However, the complete derivation of the equations will

not be reviewed herein since this information has appeared on numerous

occasions in the literature.

Bodner Model

Bodner's model [1' is a unified viscoplastic theory which does not

I require the use of a yield criterion. The constitutive equations are cast

in a continuum mechanics format and make use of many microphysical consid-

erations based on the concepts of dislocation dynamics. The form. of the

model presented herein is capable of characterizing behavior such as iso-

tropic and directional hardening, thermal recovery, and general tempera-

ture dependence of plastic flow [14). The model has two internal state

variables: an isotropic hardening parameter, and a kinematic hardening

parameter. Bodner makes use of the plastic work rate (a i ) as a

scalar measure of hardening, which enables more accurate modeling of a

strain rate jump test [1]. The uniaxial differential form of this con-

stitutive theory is presented below as [1]:

CI 2 2 Do exp(-0.5J(DpB)/oJ
2n) sgn(a) (!)I3

I
I
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| r2

- m2 (Z3sgn(u) - B)a - A2Z1 (IBI/Zl) sgn(B) (2)

I
rl

ml (Z1 - D)a I - AlZ1 (ID-Z 21!ZI) (3)

where: DpB -D t Bsgna , and (L4

I m2 - 2/2 (1 + expf-m 3B sgn(c))) (5)

I
In equations (l)-(5) the variables Do, n, mI, ZI , Z2, Al, rI , 2, Z3 ,

A2 , m 3 , and r 2 represent material parameters which can be obtained through

I a series of uniaxial isothermal constitutive experiments.

An exponential function is used as the form of the basic equation for

the inelastic strain rate, eq. (1). This function yields a very small

value at low stress levels and provides a limiting value of inelastic

strain rate in shear (D0 ). These properties appear to be particularly

* useful for predicting material behavior at a variety of strain rates.

This flow law contains a scalar coefficient (DpB) which is a function of

both the isotropic (D) and directional hardening (B) variables.

The growth laws, eq.'s (2) and (3), for the theory are in the standard

Bailey-Orowan format of competing hardening and recovery terms. Cyclic

hardening/softening characteristics are represented through the isotropic

evolution equation (3). Hardening and/or softening is included in this

I growth law by the term mlZl(ail). Hardening is modeled when Z! is

greater than the initial value of D, whereas softening is modeled when Z!

is less than th- initi-a value 0: D. The _=_ -- iD(:c'_ ,  a-COU=SI
I
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for the dynamicrecovery, while the term -AlZlI[(D-Z2 )ZIfI]rl represents

the static thermal recovery.

I Bodner's model does not make use of the back stress concept to include

directional hardening effects; instead, an anisotropic form of the flow

law is used. This flow law is assumed to behave isotropically on an

incremental basis. This growth law, eq. (2), includes hardening through

the term m2Z3sgna(aI). In the evolution equation for directional

I hardening, the term -m2B(aJI) is the dynamic recovery term, and

-A2ZI[(lBl/Zl)r2sgnB is the static thermal recovery term. Cross softening

effects are avoided by using the stress as the directional index of har-

*dening.

Walker Model

Walker's model [2), is a unified viscoplastic constitutive theory

which is based upon a nonlinear modification of a three parameter solid

containing a Voigt element in series with a spring. However, during the

development of this theory, Walker included many microphysical

considerations. The form of Walker's theory used herein is seen to be

capable of modeling isotropic and directional hardening, and includes one

internal state -Lriable, the back stress. The growth law for the back

Istress is of the standard Bailey-Orowan format. The scalar measure of
hardening used by Walker is seen to be the inelastic strain rate. The

uniaxial differential form of Walker's model is given below [2]:

.
e I - _ BIn (a - B) (6)

S- )c- - B 5r, n i- - . G

I
I
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I

D - Dl D2 exp(-n 7R) (8)

I where: G - (n3 + n4 exp(-n5 R))III + n6IBjm-l , and (9)

I R - tI d (10)

I
In equations (6)-(10), the variables DI, D2 , E, nl, n2 , n3 , n4 , n5 ,

I n6 , n7 , n, m, and B0 represent material parameters, which can be obtained

through a set of isothermal uniaxial constitutive experiments. It should

be noted that Walker's constants are temperature dependent.

The form of the basic equation for the inelastic strain rate, eq. (6),

is a power law function which accurately predicts material behavior such

as creep, relaxation and strain rate effects for strain rates below 10-2

sec "1 . However, at higher strain rates the power law expression appears

I to predict stress levels which are much larger than those actually meas-

ured during a constant strain rate tensile test [18,19]. Walker has

also proposed an exponential form of the flow law [2].

The drag stress models isotropic hardening and accounts for cyclic

hardening/softening of the material. The equation for the drag stress

I (D), eq. (8), is assumed to be a function only of the accumulated

effective inelastic strain (R). Initially the drag stress is DI-D 2 , which

eventually saturates to a value of DI as the inelastic strain increases.

The hardening in this evolution equation is given by the term D2exp(-n 7R).

No recovery, dynamic or static, has been included in the drag stress

growth law.

I
I
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I Nonlinear kinematic hardening and the Bauschinger effect are repre-

sented by the back stress. The growth law for the back stress, eq. (7),

includes hardening via the term n2 I. Dynamic recovery is modelled

by the term B(n3+n4exp(-n 5 R), and the term Bn6 models the back stress

static thermal recovery.I
EXPERIMENTAL PROGRAM

This section details the experimental program used for developing

I isothermal uniaxial constitutive data for Hastelloy X. Data were obtained

for temperatures of 1100 and 1700°F using four different mechanical

testing modes. These include monotonic tension, fully reversed cyclic,

stress drop, and complex history experiments. In the following paragraphs

I both the procedures and apparatus used to conduct these experiments are

presented.

Experimental Procedures

All of the tests performed during this program were carried out in the

Solid Mechanics Laboratory of the Aerospace Engineering Department at

Texas A&K University using an MTS 880 servo-hydraulic closed-loop testing

machine. The load frame was configured with a closed-loop heating cham-

ber, water-cooled hydraulic grips, an externally mounted load cell, an

axial extensometer, and a mini computer for controlling testing oper-

ations. The heating chamber had a maximum operating range of 180°F and

was of the three zone, resistive heating, clam shell type design. Tempera-

ture feedback for each longitudinal set of heating coils was provided by

24/28 gauge K-type bead welded thermocouple wire. The temperature at the

center of each zone was monitored by its own process and power controller

and enabled :e user to establish and maintain a sDa:iaI =4:Cr-I
I
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temperature profile (within ASTM specifications for a short term test)

along the gauge length of the specimen. A set of Fiberfrax® insulating

plugs placed on the top and bottom access ports of the furnace and grips

which extended into the hot zone were used to reduce and/or minimize the

effect of convective and conductive heat losses, respectively.

A high temperature specimen grip system was utii.zec for tis series

of experiments and, as stated above, extended into the main body of the

furnace. The grips were designed to i¢cept threaded type specimens

through the use of an inside/outside threaded adapter. Backlash in the

specimen/adapter assembly was removed via a hydraulcally operated piston

which could be loaded to a specified amount. Grip alignment was performed

prior to and during testing (failure of one of the specimen adapters

necessitated a realignment during the course of the experimental program).

This included a check of both concentricity and angularity of the load

train with respect to the actuator rod movement. The alignment procedure

yielded a total indicated run-out of 0.0008" at an angle of 0.022', as

measured by a digital dial indicator accurate to 0.00005". However, since

the adapter assembly contained a number of threaded components, it was not

reasonable to expect any degree of repeatability of these measured quanti-

ties, however; they are stated for the sake of completeness. It should

also be noted that there was no explicit measurement of specimen bending

strains to ensure compliance with ASTM specifications.

The primary measured data of interest included load, displacement, and

temperature. The load data were obtained via a 10 KIP load cell mounted

in the load train. Displacement data were measured using a one inch 7auge

length, air cooled, axial extensomenter. The exzensometer was moun~ed

outside the furnace and used a se: c _ conical zited cuarzz =.:ernder rods

I
I
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to make contact-with-the specimen. Signal conditioning for both of these

transducers was part of the MTS 880 load frame system and possessed a mul-

tiple range select feature which provided maximum data resolution. Load

and displacement data were measured using a 12 bit A/D system which had a

±5 mV resolution and was an integral part of the controlling and measuring

computer system. Temperature data were obtained using three 24/25 gauge 1,

type thermocouples equally spaced along the gauge length of the specimen.

I The theromocouples were connected to a multi-channel digital thermometer

- which was not an integral part of the A/D measuring system. Therefore,

temperature data were not automatically recorded on a regular basis, as

were the load and displacement measurements. Instead, temperature values

at the beginning of a test were entered by hand into the data acquisition

program and simply monitored thereafter. The thermocouples were attached

to the specimen using the self-supporting method. This method of attach-

ment provided sufficient thermal contact with the material to yield

accurate temperature measurements and did not flaw the specimen (which in

general can result in premature failure), as is common with welding ther-

mocouples to the surface.

The Hastelloy X material used to fabricate the specimens was purchased

in bar stock form (heat ID 2G6782) from Atek Metals Center of Houston

I Texas. This was a solution strengthened material conforming to ASM speci-

fication number 5754H. The design of the specimen was that of a standard,

constant gauge section, low cycle fatigue geometry having a nominal one

inch gauge length and quarter inch diameter circular cross-section. The

I specimens were fabricated to meet ASTM E606-77T specifications except for

the surface finish and post machining heat treazmen. A 3 24 finish was

used inszead o: :he mica. E- fcr cs7 :ons iderazicns . iadd*c-,-'--

I
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specimens were used in an "as received" condition with no additional heat

treatment to remove microstructural damage resulting from the machining

process.

A total of 27 tests were conducted in fulfillment of this isothermal

constitutive test program. Two cyclic tests were carried out at 1200 and

i6000F, respectively, and served as a basis of comparison to previously

obtained data and for uniaxial constitutive code verification. Specific

I details of the remaining 25 experiments are as follows. Monotonic tension

and fully reversed cyclic tests were performed at 1100 and 1700°F, using a

variety of strain rates, ranging from ixl0 to 3x10 3 sec "1 , under strain

controlled conditions. Strain amplitudes for the tension and cyclic test

were 4.0% and 0.8%, respectively. However, the strain amplitude of 0.8%

was subsequently reduced to 0.4% during the course of the 1O 0'F exper-

iments because specimen buckling became a problem. This was apparently

the result of a material instability at the selected temperature and

strain rate.

The fully reversed cyclic experiments were carried out until a satu-

rated condition was achieved. For the purpose of this test program,

cyclic saturation was defined as a change in stress amplitude of less than

I 100 psi, from one cycle to the next. The stress drop tests, used to mea-

sure values of back stress, were performed by inserting a hold time on the

unloading branch of a fully reversed saturated hysteresis loop, and moni-

toring the creep response. When positive creep was observed, the hold

stress was greater than the back stress and vice versa, when negative

creep was seen. Since it is very difficult to obtain the exact hold

stress which results in no creep, the general procedure was to bracket the

U tosizive and --ziv-e creep responses and use a linear recresso- schee

I
I



to estimate the values of the back stress. Additional stress drops were

made on a specimen after it had been recycled to saturated condition.

Finally, two experiments, one each at 1100 and 17000F, were performed

in order to verify the predictive capabilities of the constitutive models

considered herein. These complex history tests included mechanical

effects such as strain rate jumps, relaxazion, :--clic behavior, and strai

holds. A listing of each segment defining these experiments can be found

I in Table 1. In conclusion, a complete summary of the entire test matrix

can be found in Table 2.

Experimental Results

Based upon an inspection of the experimental data presented in Figs.

1-4, the following general observations can be made regarding the behavior

I of Hastelloy X at 1100 and 1700°F. For the range of temperatures tested,

the material exhibits a positive strain rate sensitivity, that is, stress

amplitude increases with an increase in strain rate (see Figs. 1 and 3).

However, Fig. 1 also shows that there is an inversion of the rate

sensitivity between a strain rate of 10-4 and 10, 3 sec-1, which would

indicate that strain aging effects are present at 1100°F (Strain aging is

a thermally activated solute effect which generally changes the rate sen-

I sitivity of a material). This phenomenon is further demonstrated in Fig.

* 2 and appears to be more pronounced once the material undergoes cyclic

deformation. While no explanation for this type of behavior can be made,

other researchers [2] have reported that the rate sensitivity changes

from negative to positive between 1000 and 1200*F. Therefore, one can

I conclude that the material is undergoing a significant microstructural

change in this temperature range which may result in the strain aging

effect observed herein.

I
I
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The fully-reversed hysteresis loop data, shown in Figs. 2 and 4,

indicate that Hastelloy X undergoes cyclic hardening up through 1600"F and

I cyclic softening thereafter. The amount of hardening and/or softening, as

i indicated by the difference between peak stress levels at initial loading

and cyclic saturation, appears to be a function of both temperature and

strain rate and, in general. increases with strain rate, but decreases

with temperature. This type of material response is again typical of that

reported by other researches [2]. In addition, the saturated cyclic data

can also be used to make one other observation regarding symmetry of the

data in tension and compression. A Bauschinger-like effect was noted

during testing, which resulted in an asymmetric cyclic response with

respect to the strain axis as the material was going through its initial

cycling. However, no specific trends were observed regarding this

asymmetry as a function of strain rate or temperature. In addition, as a

I saturated condition was achieved, the material generally exhibited little'

or no asymmetric characteristics. This is contrary to what has been

previously reported in the literature [2], wherein Hastelloy X is shown

3 to have a higher stress amplitude in compression than in tension. It is

believed however, that this discrepancy is simply a result of how long

the material was cycled and therefore does not represent a significant

constitutive behavior variation.

3 MATERIAL PARAMETER EVALUATION

Evaluation of the material parameters for the unified constitutive

3 theories represents one of the most difficult aspects of their

implementation. These difficulties generally stem from the fact that a

Ilar r---ecr")zcn c: an ex:er-*ment -sec ic dce

I
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constant-cannot-always-be achieved as-well in the laboratory. Thus,

without accurate constants, characterizing material behavior, even with

Ithe best of models is not possible. To this end, one can take several

approaches: 1) make use of least squares optimization techniques and

neglect the real physical aspects of the theory; 2) simplify or recast

the original constitutive equations, through a series of judicious

assumptions, so that the different phenomena being modelled can be

inuividually examined; and 3) numerically integrate the nonlinear form of

the theories directly, using physical incite, as well as knowledge cf the

Iequations in an iterative approach, incrementing the parameters unzi!
acceptable values are determined. The first approach mentioned above may

provide constants which adequately predict material behavior within the

- limits of the data base used to generate them. However, there is no

guarantee that under more complex conditions accurate results will be

Iobtained. The second approach, on the other hand, represents the present

and more traditional form of determining tile material parameters.

However, obtaining unique values of the constants directly from a

discretization and linearization of the constitutive equations generally

requires additional data manipulation in order to accurately characterize

a given material response [20]. Therefore, presented below is the third

method, which is a simpler and much less time consuming iterative style

procedure for determining the material parameters.

*The iterative method described herein attempts to provide the reader

with physical incite about the various parameters used in both the

Bodner and Walker theories, so that final forms of the constants can be

obtained directly by this method. The procedure requires the user to

assume some '--a i--ma e of the constants. base6 ':= EF

I.. . = o s a t ,b s d u o _
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the material and model behavior, in order to begin the process.

Computer Iterations

A detailed explanation of the order of determination of parameters,

experimental data requirements, and a description of the constants for

each model will be presented later. However, some general observations

3 can be made which are applicable to other models as well. The order in

which the material parameters are evaluated is an important factor in

determining the ease and speed at which these constants are obtained. The

hardening parameters were determined first, and the recovery constants

determined last, with the order within these categories being determined

by the amount of influence each constant had. The constants with the most

effect were determined first. Experimental data requirements were both

high and low strain rate tests. The hardening constants required thL use

of the experimental results from high strain rate tests. These tests were

used based on the assumption that at high strain rates the thermal

recovery is negligible. The recovery constants were evaluated using slow

strain rate tests based on the same previously mentioned assumption.

The first step in the evaluation of the material parameters was to

study experimental data in order to determine points on the curve at which

U it was desired for the model to predict most accuiately. In this case,u the points most generally used were a point directly following yield, a

point in the middle of the plastic behavior, and the maximum and minimum

strain amplitudes. The general shape and cyclic hardening or softening

characteristics were also observed, as well as strain rate sensitivity,

3 and thermal recovery behavior. Studying the experimental data and becom-

inz familiar with it was found to be very imDortant for dezermininz the

consta. s most e- x -'o,.. _e o-at4o n c'- :: roz t: e -c c

I
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observations was-used-to develop a physical feel for each of the constants

and their influence on the model.

All of the constants for these models, except the elastic modulus, E,

were obtained starting with provisional values and using an iterative

procedure. The iterative procedure began by first assigning a value of

zero to all of the constants except for the exponents. initial 'aiues iro

the exponents were selected so as to avoid any numerical overflo. condi-

tions. The iteration proceeded by assuming a provisional value of one

constant, and adjusting that constant until satisfactory results were

obtained. SatisfactorY results in this case implies that a desired stress

amplitude for a given strain point was achieved using the constants

invoked at that time. Next, another constant was given a value and

subsequently adjusted. Each time another constant was enabled or a

different experiment was used, all provisional values of constants were

updated. Iteration proceeded in this manner until all applicable con-

stants were evaluated and the experimental data was satisfactorily pre-

dicted for the required tests. It should be noted that when iterating

between a fast and a slow strain rate test, care should be taken not to

update the hardening constants too much. It was found that

"over-updating" these constants caused problems when switching between

these tests, which resulted in performing unnecessary iterations.

Bodner Model: The iterative procedure for this model began by evalu-

ating the isotropic hardening constants. Z0 was the first parameter of

interest and represents the initial valve of the isotropic hardening vari-

3 able. This constant is seen to affect the yield point location. translt-

ing it up or down the stress ax:is as shom. in Fi. 5a. In addition. this

?a'amee:er. oonju-crion :irp -. 4 -Co- :e '.
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(Z 0 <ZI) or softening (Zo>Z I ) will be modeled. The strain rate exponent,

n, was determined next. This constant appears to be related to the velo-

I city of dislocations in the crystalline lattice [1] and as a result, is

I highly temperature dependent. In general, this constant is determined

using rapid strain rate data, where thermal recovery effect- are not

present. This parameter physically shows the dependence of the flow stress

with strain rate and affects the predicted stress-strain response as shown

I in Fig. 5b, noting that the yield point does not change, but rather the

rate at which a saturated value of the flow stress is attained. The

limiting or maximum value of the isotropic hardening variable, ZI , is used

* to raise or lower the stress amplitudes during cyclic hardening and

softening, respectively, and was set next. Figure 5c shows the effect of

changing ZI for a given value of Z0 . The last of the isotropic hardening

constants, mI, was then determined. This parameter is seen to affect the

rate at which D reaches a saturated condition. In general, once the

I inelastic strain becomes significant, increasing the value of mi makes

do/de larger and vice versa, as shown in Fig. 6a. Some summary

observations regarding these three hardening constants are that the

difference between Z0 and ZI, in conjunction with ml, sets the rate and

I amount of cyclic hardening/softening. However, Z0 alone determines the

initial yield point, whereas Z1 sets an upper limit on the predicted

stress levels. The constant ml, on the other hand, the rate at which

* these conditions are met.

Values of the directional hardening evolution equation were determined

next. The limiting value of the directional hardening, Z3, was found

first using a provisional value of m2 . The purpose o: th:s hardeninr zer

is mairiv to aco-.= r auscinter :,-f- e Wa
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introduce a more nonlinear stress-strain response. Z3 , coupled with m2

and m3 , the directional hardening rate coefficient and shape factor con-

stants, respectively, tend to add more shape to the predicted behavior,

reducing the typical "oversquare" problem associated with many other mod-

els (see Fig. 6b).

e thermal recovery constants were thl last parameters to be dete:-

mined. As a general rule, the value of Z9, which represents the fully

recovered value of isotropic hardening, is simply set to that of Z0 as was

the case during this iterative procedure. The value of A1 , the recovery

coefficient for isotrcpic hardening, was then determined using a provi-

sional value of rI . This constant is seen zo be most effective once B is

of sufficient strength; that is, once a significant amount of plastic

deformation has occurred. Adjusting the value of A1 should be performed

with slow strain rate test data when recovery mechanisms are generally

active. Figure 6c depicts the effect of varying A, , noting that this

constant has little influence at the low inelastic strain levels. However,

under cyclic conditions this parameter will reduce the overall stress

amplitudes appreciably as its value is increased. The recovery coeffi-

cient r1 was then found. Figure 6d shows the effect of increasing rI for

a given value of A1 and basically indicates that increasing the value of

this coefficient enhances the rate of application of recovery (i.e.,

active at lower plastic strain values). Chan [13] reports that for most

metallic materials, the value of rI can be set to a number between 2 and

3. Lastly, the directional hardening recovery parameters are, in general,

set equal to the respective isotropic constants.

Walker's Model: First. the hardening parameters were investigated.

De gnn in Ewih -7 7his constant renresents rhe nra: stress cr zsctrct::
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hardening. Adjustment of this constant results in-changing-the height of

the stress-strain curve. Increasing D1 raises the stress level, whereas

decreasing the values lowers the stress response. Next, the strain rate

sensitivity parameter, n, was put into play. The effect of adjusting the

value of n on the stress-strain response shown in Fig. 7a. This value was

adjusted based on experimental observations of the strain rate

sensitivity. Next, the back stress or kinematic hardening parameters, nj

and n2 , were enabled. The combination nl+n 2 was found to determine the

shape of the curve as shown in Fig. 7b. The value of nI adjusts the slope

of the stress-strain curve after yield. For this material, nI had

negligible effect and was therefore disabled. Figure 8 shows the effect

of n2 on the curve. Since the material behavior studied was governed by

hardening effects for the most part, n2 was found to be very important in

the prediction of this material response.

Next, the values for the recovery constants were obtained. First, the

parameter B0 was initialized, which accounts for the difference between

tensile and compressive creep. The effects of adjusting this parameter are

shown in Fig. 9. The exponent on the back stress thermal recovery term,

m, was then evaluated. The results of manipulating this constant are shown

in Fig. 10. The back stress recovery constant, n3 was then investigated.

This constant was seen to be responsible for the Bauschinger effect.

Adjusting n3 effected the asymmetry of the stress strain response, as

shown in Fig. 11. Observation of the experimental data showed that the

data exhibited no Bauschinger effect. Therefore, this parameter was not

enabled. Next, the constants D2 and n7 , were simultaneouslv evaluated.

These constants allow the model to Dredicz iso-ro ic cvclic harden-

ing'/s~of-ni" i'ncreasi G :he .alue cf - a-pears : recu:e d,-, :,c- el
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saturated stress level. and the opposite trend results when D2 is

decreased. The constant n7 simply appears to magnify the stated trends of

D2 . This trend is shown in Fig. 12. From the investigation of experimental

data it was observed that enabling these constants did not produce

accurate predictions of cyclic response. it was therefore concluded that

these constants have little effect on the response for this material. and

they were subsequently disabled. The ability of this model to predict

cyclic hardening and softening will be addressed later.

Next, the parameters ra and n5 were investigated. These parameters

account for dynamic recovery of the back stress. Fig. 13a shows the

effect that n4 has on the stress-strain response with the value of n5

serving as a magnifier of this term. In this figure it can be seen that

the material exhibits tri-linear behavior when n4 is decreased. This

behavior can be explained by the fact that decreasing the value of n4

results in a decrease in the amount of dynamic recovery, thus leaving onlv

static thermal recovery. The first linear portion of the curve is the

elastic loading region. The second linear portion of the curve comes about

because thermal recovery is small at the onset of inelastic behavior and

thus, the back stress grows linearly with strain. The final portion of the

I trilinear curve results when the back stress becomes large enough to

activate thermal recovery. The thermal recovery term increases until it

balances out the linear hardening term. However, because this material

exhibited little recovery, these constants were found to be unnecessary,

and were subsequently disabled. Finally, the constant n6 was evaluated,

which accounts for thermal recovery of back stress hardening. The effect

of varying n6 is sho-n in Fig. !3b. This constant was found to be

Innecessarv because the maerial showed on," a smal aou- Cf ha:
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--- recovery, and-it7-was-set to-zero. The-material parameters for both the

Bodner and Walker models were obtained for Hastelloy X at 1100 and 1700"F,

I using the computer iteration scheme. Provisional values of the constants

were established using a knowledge of the material behavior and model

characteristics as a guideline. Final values of the parameters can be

seen in Tables 3 and 4. in the following section. the abiizy o: these

models/constants to predict the behavior of Hastelloy ). under more complex

conditions will be investigated.

I RESULTS

This section provides results, which show the response and predictive

capabilities of Bodner's and Walker's theory for Hastelloy X. Experimen-

tal data, as well as material parameters obtained by the iterative

procedure described herein for temperatures of 1100 and 1700°F, are used

I as the basis of comparison.

Figure 14 presents the response of both models at 1100°F in comDarison

to the experimental data. Bodner's theory models the behavior of Hastellcy

at 1100°F fairly well. However, significant discrepancy can be found in

the estimation of the sharpness and height of the initial yield point. The

smoothness of the response characterized by Bodner's model is governed by

the kinematic hardening variable term in eq (2). For this application, it

was found that the parameter m3 helps to smooth the response as its value

3 is increased. However, referring to eq. (5), it can be seen that this

constant will result in numerical difficulties if increased too much.

Thus, it was concluded that the sharpness of this resDonse is due to the

fact that m3 could not be raised to a large enouzh value. The cause c:

underestimazion cf t ,eld nci: tn = aen 5:- S::ee-- -

I
I



* 21

lution law for isotropic hardening, eq. (3). The constant Z0 , the initial

value of the isotropic hardening parameter, sets the value of the initial

yield point. However, the value of Z0 must also be low enough for the

term (ZI - D) to account for cyclic hardening. Therefore, a compromise

was reached that allowed for characterization of both responses. Other

researchers also experienced similar problems when wcrking with ztis

material [21).

I Walker's model generally overestimated the stress levels for the first

quarter cycle by as much as 50 percent (i - 1.19E-03 sec-1 ). This

overestimation can be explained by the fact that Hastelloy X cyclically

hardens at 1100*F. Walker's model was unable to accurately predict cyclic

hardening/softening effects, primarily because the constants D2 , and n7,

which govern this behavior, were found to be ineffective for the case

studied. Disabling these parameters causes the evolution law for the drag

stress, eq. (7), to be a constant. Therefore, the stress response was

forced to be near the cyclically saturated stress level. Walker also

found that his model did not accurately characterize monotonic tension

* behavior of this material at other temperatures [2].

Figures 15 shows a comparison of the initial response of both models

I to experiments at 1700 ° F. For this case, Bodner's model is seen to

underestimate the stress response for the high strain rate test, and

overestimate for the slow strain rate test, with the yield point staying

approximately the same. This response is explained by observing that a

fairly rigid upward shift of the experimental curve occurs with increasing

strain rate. Recall that the parameter, Z0 , is set at a value which allows

both the yield point and cyclic hardening/so fenis characteris:tics to be

modelled 'See Fit. 5a 7n addition. zhe conszanz. n, whic-h azcoanZE
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I strain-rate sensitivity, does not respond to changes in strain rate by

rigidly shifting the entire curve. Thus, once the parameter Z0 is set,

attempts at modelling the peak stress amplitude result in changing the

rate at which the flow stress saturates.

Walker's model characterizes the first quarter cycle a !700°F well.

It can be seen that Hastellov X cvclica!iy softens oni'. sligh:"i- a: i700

F, and therefore, the initial stress level is near the final saturated

stress value. Thus, the model does not have to capture a large cyclic

softening response. This thecry models the material behavior at high

strain rates (Fig. 15) even more accurately because the assumption is made

that at high strain rates thermal recovery is negligible. With n,, thermal

recovery, even less softening occurs, and the initial value is almost

exactly the same as the saturated stress level. As the strain rate is

decreased, thermal recovery is initiated, causing more softening.

Therefore, Walker's model begins to overestimate slightly with decreasing

* strain rate.

The cyclic response at 1100°F is shown in Fig. 16. As was previously

U discussed in the experimental section, this material was shown to display

the strain aging phenomenon at this temperature (See Fig. 2). Therefore,

it should first be noted that the forms of both models used in this study

did not incorporate strain aging correction terms, and thus, the strain

aging effects are not accurately captured. In general, the peak saturated

hysteresis values for high and low strain rate tests were accurately mod-

elled. However, for intermediate cases, the stress levels were overesti-

mated. This response is presumably the result of the strain aging phe-

nomenon, as shown in Fig. 2. However, it can be seen that even with tne

strain aging effeczs, Bodner's theory" is canable of modeln te = rI
I
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I shape, the yield point, and saturated stress levels for this application.

On the other hand, Walker's model demonstrates some difficulty in mod-

elling the general form of the curve for the slow strain rate test, and

presents an "oversquare" response. In order to explain the inability to

model the form, it should be noted that the curve changef considerably

from highn tc low strain rate tests. For the form of Walker's model used

herein, only one parameter, n2 , is available to govern this type of shape

change (See Figure 8). Thus, modeling two curves which are very different

in form is difficult. "Oversquareness" of the response is typical of

Walker's model at slow strain rates, as was demonstrated by Walker trl

Figure 17 presents the cyclic response cf both models, in comparison

with measured values, at 1700°F. For this case it is seen that Walker's

I model accurately characterizes the material behavior. Bodner's model

predicts well also, but has a few discrepancies resulting from the same

problems as were discussed for the initial load up case. Specifically,

Bodner's model overestimates at the slow strain rate and underestimates at

the high strain rate.

3 Figures 18 and 19 demonstrate the predictive capabilities of the

models compared to complex history tests performed on Hastelloy X at

1700°F. Experimental results were compared to Bodner's theory at 1700°F,

3 as seen in Fig. 18. This figure shows that Bodner's model predicts an

extremely "oversquare" response. This response is not in keeping with the

i observations made previously in this study, where Bodner's theory

accurately represented the general shape of the stress-strain curve. Also,

this model demonstrates insensitivity to -elaxation and strain rate jumps.

I This response is contra-- to information ven b,.- 5odner _ 'ner -_

-:-d =-,at -se O: -ie ar-i s a a measure r

I
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enables the model to better predict strain rate jump behavior. This

inconsistency is possibly due to the fact that the hardening terms in the

evolution equations, eq. (2) and eq. (3), saturate too quickly.

Figure 19 presents a comparison of Walker's theory to measured values

at 1700 0F. Walker's model predicts the overall response accurately,

including general shape, strain jumps, and relaxazion. This ouzcome _:

congruent with previous results.I
CONCLUSIONS

The purpose of this research was to perform an analysis of the abiliv'.'

of the Bodner and Walker theories to model the behavior of Hastelloy X at

1100 and 1700°F using experimentally obtained data as a basis. The

constitutive behavior of the material was characterized using material

parameters determined by a simple iterative approach described previously.

This iterative approach appears to be a viable alternative to the more

traditional evaluation methods used by other researchers. in addition,

listed below are some other pertinent conclusions:

1) The main objective of the experimental program was to obtain

uniaxial test data for Hastelloy X at 1100 and 1700°F and it is believed

U~that this has been achieved. However, at these temperatures significant

microstructural changes in the material are taking place. Since the form

of the constitutive theories considered herein cannot accurately predict

the type of transient phenomena observed, evaluation of the material

parameters was made more difficult. In retrospect therefore, utilizing

the models considered herein at these temperatures is not advisable.

2) Both models fail to accuratelv characterize the initial quarter

cycVe cf a hysZeresis !ooz. wLnle. tne -azer:.:hi:iL i "

I
I
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- hardening/softening effects. Bodner's theory demonstrated more capability

to model the growth of isotropic hardening than did Walker's theory.

However, Bodner's model was generally unable to capture the yield point

* properly.

3) Both models provided a good representation of peak stress

amplitudes of the fully reversed cyclic experiments at 1100 and 17?-7

However, at 1100°F Walker's model gave an "oversquare" response. This was

* attributed to the fact that strain aging effects were present which

significantly altered the stress-strain response as a functicn of strain

rate.

4) From the complex history experiments at 1700°F, it is seen that

Walker's model accurately predicts the stress-strain response for cyclic,

strain jumps, and relaxation behavior. Bodner's model on the other hand,

does not provide an adequate simulation, even though the theory was

reported to be capable of handling these types of conditions.I
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I Table 1. Complex History Test Information.

i Change in Change in
Strain Rate Strain Strain Time Time
(sec I) (%) (%) (sec) (sec)

1.90738E-05 C.2 0.2 104.856 !04.E56

1.99795E-04 0.2 0.1 109.860 5.050

1.99984E-03 0.4 0.1 110.360 0.500

I.OOOOOE-00 0.4 0.0 301.010 109.647

1.90728E-06 0.6 0.2 1349.370 1048.560

1.85969E-05 0.3 -0.3 1510.890 161.317

0.OOOOOE-00 0.3 0.0 1859.410 348.520

I 1.85969E-05 0.0 -0.3 2020.720 161.317

1.99989E-03 -0.2 -0.2 2021.720 1.000

1.98367E-04 -0.6 -0.4 2041.890 20.165

1.98367E-04 -0.2 0.4 2062.050 20.165

0.OOO00E-O0 -0.2 0.0 2761.090 699.040

1.99798E-03 0.3 0.5 2763.590 2.502

1.99798E-04 0.4 0.1 2768.600 5 005

1.90738E-05 0.6 0.2 2873.450 104.856

1.71664E-03 -0.6 -1.2 3572.490 699.040

5.72213E-04 0.6 1.2 5669.610 2097.120

5.72213E-04 -0.6 -1.2 7766.730 2097.120

5.77213E-04 0.6 1.2 9863.850 2097.120I
I
I
I
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Table 2. Test Matrix.

I Strain Strain Type of
Test Specimen Temp. Rate Amp. Test

(F) (secl) (%)

4 1100  !.192!E-05 2.5 Monotni
Tension

5 5 1100 1.1921E-05 0.8 Cyclic
6 6 1700 !.1921E-05 0.8 Cyclic

1700 1.2207E-04 0A Cyclic
8 8 1700 1.1903E-03 0.8 Cyclic
9 9 1700 5.0362E-04 0.8 Stress

Hold
10* 10 0.6 Monotonic

Tension
11 11 1700 1.1903E-03 4.0 Monotonic1 1Tension
12 12 1700 ).814SE-03 0.8 Cyclic
13 * 13 1100 3.8148E-03 0.8 Cyclic
14 14 1100 1.2207E-04 0.8 Cyclic
15 * 15 1100 1.1903E-03 0.8 Cyclic
16 16 1100 1.1903E-03 4.0 Monotonic

Tension
17 17
18 * 18 1100 1.1903E-03 0.8 Cyclic
19 19
20 20
21 21 1100 5.3047E-05 0.8 Stress

Hold
22 * 22 * 1100 5.0362E-04 0.8 Cyclic
23 23 1100 5.0355E-04 0.6 Stress

Hold
24 24 1100 1.1902E-03 0.4 Stress

Hold
25 25
26 26
27 @ 27 1100 0.6 Complex

History

28 @ 28 1700 0.6 Complex
i _History

I
I
I
I



I

Table 3. Material Parameters for Bodner's
Model at 1100*F and 17000F.

I
Parameter 1100°F 1700°F

I A!,sec "  0.6500E-04 0.6500E--"

A2 , sec-1 0.6500E-04 0.6500E-04

I D0 , sec
"I  0.1000E+05 0.1000E+05

E, psi 0.2394E-08 0.1900D+08

rI 0.9800E-00 0.9800E-00

r2  0.9800E-00 0.9800E-00

m! , psi-
I  0.5500E-03 0.5500E-03

I m2 , psi- 0.11OOE-01 0.IIOOE-02

m 3 , psi
"I  0.3477E-04 0.3477E-03

n 0.1000E+01 0.7000E-00

ZO, psi O.IO00E+06 0.2500E+06

Zl, psi 0.2900E+06 0.2200E+06

Z2 , psi 0.1000E+06 0.2500E+06

Z3 , psi 0.1300E+06 0.8200E+05

I
I
I
I

I
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I Table 4. Material Parameters for Walker's
Model at I100"F and 17000F.I

Parameter 1100°F 1700'F

I D, psi 0.8580E+05 !,.080E06

D2, psi 0.0000E-00 0.OOOOE-00

E, psi 0.2394E+08 0.1900E+08

n!, psi 0.OOOOE-00 O.OOOOE-00

n2 , psi 0.4200E+07 0.2500E+06

n3  0.OOOOE-00 0.0000E-00

n4  O.O000E-00 O.OOOE-00

n5  O.OOOOE-O0 O.O000E-O0

n6 , psi(l-m)sec
"I  0.0000E-00 O.OOOOE-00

n7 , sec 0.OOOOE-00 O.OOOOE-00

n 0.1420E+02 0.5000E+01

m O.1160E+01 0.1160E+01

I BO, psi -0.2000E+04 -0.1000E+04

I
I
I
I
I
U
I
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m A Review of the Theory of

Thermomechanical Coupling in Inelastic Solids

mby

m David H. Allen

Aerospace Engineering Department

I Texas A&M University

College Station, TX 77843

m ABSTRACT

m Coupling between mechanical and thermodynamic processes can be

significant in solid media when material inelasticity occurs. Significant

mechanical energy may be converted to heat via hysteretic loss, and this

coupling may be significant even under quasi-static conditions. Important

advances have been made since the second world war in modelling this

thermomechanical coupling. This paper reviews many of the major achievements

on this subject.

I The paper opens with a short review of historical milestones on this

subject. A theoretical model is then reviewed, including both conservation

laws and constitutive models for certain classes of solids. The paper

m concludes with a discussion of recent attempts to solve the inelastic coupled

thermomechanical field problem.I
U
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I INTRODUCTION

I The phenomenon of coupling between thermodynamic and mechanical processes

in solid media was first predicted by Duhamel 118371. The significance of

this coupling depends on the type of material behavior encountered during the

process, as well as the time required to perform the process. In the case of

elastic solids, this coupling is for most materials insignificant except under

I conditions wherein inertial effects are not negligible. However, in inelastic

media circumstances may arise wherein this coupling is significant even under

quasi-static cunditions.

This phenomenon can be illustrated with a simple experiment: take a coat

hanger and bend it until permanent deformations occur. Now note that

m additional mechanical energy must be supplied in order to restore the coat

hanger to its original configuration. Since mechanical energy must be applied

throughout the entire process, the question becomes: where has the mechanical

energy gone? The answer can be found by repeating the process several times

and then touching the coat hanger where the permanent deformations have

occurred. Of course, anyone who has ever performed this experiment knows that

the coat hanger heats up, so that it is clear that at least some of the

m mechanical energy has gone into heat.

While the above example represents a somewhat simplistic viewpoint of

thermomechanical coupling, it nevertheless verifies the existence of the

phenomenon, and whereas this example is of purely academic interest, there are

numerous physical situations occurring in science and engineering today

m wherein this coupling may be so significant as to be unavoidable in order to

accurately model mechanical response. This paper endeavors to lay out the

I important developments that are necessary in order to go about solving a

m
I
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m problem involving thermomechanical coupling. This is accomplished in three

parts: a historical review; theoretical foundations; and applications of the

theory for certain problems.I
HISTORICAL REVIEW

I
Historically, the foundations of continuum mechanics appear to have been

I formulated just after the turn of the nineteenth century at the Ecole

Polytechnique in Paris. Although their research did not appear in print until

sometime later, two students of Laplace appear to have successfully formulated

the boundary value problem for isotropic linear elastic media by the year 1822

INavier, 1827, Cauchy, 1823J. Navier is credited with the initial formulation

of the field problem, but Cauchy was the first to introduce the concept of

stress. At the same time, Fourier was proposing a model for the transfer of

heat [Fourier, 18221. These early models did not recognize the coupling

I between mechanical and thermal energy.

It remained for Duhamel to propose the first model of thermomechanical

coupling in 1837 [Duhamel, 1837, 1838]. Thereafter, the fundamental advances

in thermodynamics by Caratheodory 11909], as well as the research of Neumann

I [18851 provided further credence to the theory of thermomechanical coupling,

so that by the start of the first world war this phenomenon was well known in

elastic media [Voigt, 19101.

During the first quarter of this century the phenomenological theory of

plasticity was solidified by a number of scientists including Prandtl 11924],

Von Mises 119131, and others. These achievements in plasticity helped to

spawn an interest in thermomechanical coupling in inelastic solids, such as

the landmark experimental works of Farren and Taylor 11925] and Taylor and

I
I
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I Quinney 119341. These works demonstrated that nearly all of the hysteretic

loss in elastic-plastic solids is converted to heat. These experiments have

been verified by more recent and precise experiments [Halford, 1966, 1987;

Dillon, 1962, 1962, 1966; Tauchert, 1967, Tauchert and Afzal, 1967; Kratochvil

and DeAngelis, 1971].

Although great advances had been previously made in the theory of

thermomechanical coupling, the necessary framework to construct a theory

applicable to inelastic solids did not appear until the 1950's. The first

work appears to have been reported by Biot [19561, utilizing developments in

irreversible thermodynamics achieved by Prigogine in the late 1940's 119471.

This paper was then followed by a number of works dealing with thermodynamics

of coupled thermomechanical processes in inelastic solids [Boley and Weiner,

I 1960; Coleman, 1964; Coleman and Gurtin, 1967; Schapery, 1964, 1964; Olszak

and Ppryna, 1968; Green and Naghdi, 1965; Dillon; 19631 most notably those by

Kratochvil and Dillon (1969, 1970], and Lehmann [1972, 1977, 1980]. In the

following section a general formulation of the field problem as constructed by

these authors is reviewed.I
THEORETICAL FORMULATIONI

Consider a continuous domain with interior V and boundary B. The body

V+B may be either simply or multiply connected. The objective is to predict

* to a predetermined degree of accuracy the mechanical response (such as

deformation field) of the body to some arbitrary input. It is assumed that.

I although thermal effects on mechanical properties may be significant, electric

and magnetic effects produce negligible mechanical response [Coleman and Noll,

19631. Furthermore, in the current model development, it is assumed that all

I
I
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3 deformations are infinitesimal (although the theory applies with minor

modifications to media undergoing finite deformations). Under these

conditions it is postulated that the following physical quantities are

necessary to characterize the thermomechanical response at all points xk and

for all times t in the body V+B (Coleman and Noll, 19631:U

I 1) the deformation field

ui = ui(xkt)

2) the stress tensor

Oij = ij(xkst)

3) the body force per unit mass

fi Z fi(xk,t)

4) the internal energy per unit mass

u=u(xk,t)

* 5) the heat supply per unit mass

r=r(xk9t)

1 6) the entropy per unit mas5

s=s(xkst)I
7) the absolute temperature

I T=T(xk,t)

I
I
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m 8) the heat flux vector

qi = qi(xkt)

land -

9) the mass dEnsity

P=P(xk,t)

Also, recall that the deformation field ui is related to the infinitesimal

strain tensor by

m
ij = (u,+ i ()

m Statements 1) through 9) above, along with equation (1) describe 32 state

variables to be determined for each material point and at all times in order.

to characterize the state of the body V+B. Now consider what is available to

m obtain the 32 state variables postulated above:

* 1) Conservation of mass (assuming infinitesimal deformations in a closed

m system):

mp =(2)

2) Conservation of linear momentum:

oJjj +Of = Pu (3)

I ~

m
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I3) Conservation of angular momentum (assuming no body moments):

Iji =ij (4)1
4) Conservation of energy:I

Pu = oijcij - qii + pr (5)

*5) The entropy production inequality:

Ps + (-),i o (6)

1T

When tallied, the above are a set of seventeen equations and one

inequality. Since the number of available equations (17) exceeds the number

of state variables (32), one must assume that additional equations are

required in order to produce a complete model. On reflection, this would seem

*obvious due to the fact that none of the above equations recognizes the

material makeup of different media. In other words, if the information

I already supplied were sufficient to describe the state of a body, two

different bodies of identical shape but different makeup (such as steel and

silly putty) would respond the same to identical inputs. Since this is

obviously not the case, it will be necessary to construct additional equations

describing the material makeup (or constitution) of the body.

In order to accomplish this, first recall the 32 unknown quantities to be

determined: ui, i' f p ' u, qig s, r, T, and £ij"

In physical practice the field variables fi and r are normally specified

I
I
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as input data. However, suppose that as a thought experiment the variables ui

and T are specified. It is common to call these variables the independent

variables. However, it is preferable to call them "specified variables" since

all of the state variables are in fact independent of one another. Although

any four variables could be chosen, it is propitious to choose ui and T

because they are directly measurable quantities in laboratory experiments.

This leaves a total of 32 (variables) minus 17 (field equations) minus 4

m (specified variables) or eleven equations to be determined.

These last eleven equations are termed constitutive equations. In order

to obtain a complete solution, then, it is possiole to proceed in the

following stepwise fashion:

1) Specify as input variables ui = u i(xkt), T = T(xk,t) at all points in V+B,

thus reducing to 28 unknowns;I
2) utilize the conservation of angular momentum equations (4) to symmetrize

the stress tensor, reducing to 25 unknowns;

I
3) use strain-displacement equations (1) to obtain cij, thus reducing to 16

3 unknowns;

m 4) use the conservation of mass equation (2) to determine p, reducing to 15

m unknowns;

m 5) assume that the following eleven equations can be determined at all points

in V+B:m
I
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a i(Xmt) = Oij(kI(Xm't), T(xm~t), gk(xmt)) (7a)

I
U(xm,t) = U(ekl(xm~t), T(Xm~t), gk(xmt)) (7b)

S(xm,t) = S{ckl(Xm-t), T(xmmt), gk(xm.t)) (7c)

qi(xm,t) = qi{ kl(xm't), T(xm,t), g k(xmt)} (7d)

where [ ) signify history dependence, spanning the interval of time between

which the quantities are initially known and the current time of interest, and

gk=T k. Note that eij is utilized instead of ui in order to exclude

* dependence on rigid body motions;

6) use the conservation of linear momentum equations (3) to determine fi,

reducing to 1 unknown;I
7) use the conservation of energy equation (5) to determine r; and

I 8) impose entropy production inequality (6).

Thus, the constitutive equations (7), subject to the constraints imposed

by the entropy production inequality, comprise a sufficient number of

I equations to solve the boundary value problem of interest when adjoined with

the other seventeen equations described above. The above procedure is

impractical for actually solving problems analytically because in practice one

cannot normally specify ui and T a priori at all points in V+B. The point of

the method is to form a reasonable approach for constructing the general formI
I
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m of constitutive equations (7). Once the precise form of these equations has

been determined, it is then possible to utilize the most expedient solution

procedure for the problem at 
hand.

Unfortunately, the form of equations (7) is still quite general, and

further constraints are available only via the entropy production inequality,

I physical intuition, and experimental evidence. Since the last is often

cumbersome and expensive, the first two should be utilized to maximum

advantage.

Note that although higher order spatial derivatives in the displacement

field ui(xk) and temperature T(xk) could in principle be included in

constitutive equations (7), their inclusion would yield a non-local theory.

Such a non-local theory is generally only necessary when the scale of the

microstructural features of the medium is large relative to the boundary value

problem of interest. It will be assumed in the balance of this discussion

that all microstructural features are very small, thus rendering a local model

acceptable. Note also that equations (7) are not equations of state, since

they require information at times other than the current time. Thus, the

inclusion of time derivatives would be redundant.

Constitutive equations (7) are called the functional formulation.

Alternatively, we could propose an internal state variable (ISV) formulation:

I
u 2 a ,T,g , ) (8d)°i ij(ckll k' kl

U = U(EklT~g~ k 1 (8b)

3 s = s(Ckl,T,gk, kl) (8c)

I

I



qi q, i('kl9T 'gk 'c'Il)  (8d)
I

0 (L J,T, (Be

ii n=,...,n; =,...,n (eI
where n is a sufficiently large number to characterize the material at hand.

I Equations (8e) are called internal state variable (ISV) evolution (or growth)

laws. From the above description it can be inferred that an internal state

variable is any state variable which cannot be obtained from an equation of

3 state in terms of the specified variables (ui and T). Instead, it must be

obtained from an evolution law which is necessarily a differential equation in

* time.

It can be shown that when equations (Be) are continuously integrable in

time the above are a special case of the functional formulation described by

equations (7) ILubliner, 19721.

Although constitutive equations (8) satisfy the principles of

equipresence, determinism for stress, and local action, they do not actually

satisfy the principle of material frame-indifference, but are in approximate

I agreement for infinitesimal displacements.

Now, to summarize, the problem is to solve for the 32+9n state variables

Ui, a fig p, u, qi, r, s, T, cij, and ax. To obtain these quantities,

equations (1) through (5), (8) and inequality (6), or 28+9n equations are

available, together with appropriate thermal amd mechanical boundary

conditions. Since the remaining four degrees of freedom (fi and r) can be

specified, this formulation constitutes a well-posed boundary value problem.

I Constitutive equations (8) represent a general framework which is a

formidable task to quantify for each material. Fortunately, there are two

steps that can be taken before it becomes necessary to proceed to the

I
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m laboratory and perform (usually expensive) experiments. First, it is

m necessary to satisfy the entropy production inequality, and this will provide

constraints on the allowable form of equations (8). Second, it is possible to

perform "thought" experiments imposing such restrictions as material symmetry

which will further constrain the form of equations (8).

m To perform these two steps, first define the lelmholtz free energy:

I h = u-Ts (9)I
Thus, the free energy represents the recoverable energy during any proess.

m Note that due to the above and definition (8), the Helmholtz free energy may

be written as follows:I
h = h(ckl,T,gktav1) (10)

Therefore, according to the chain rule of differentiation

hh ah ah (3C-k Ekl + 'T T + -g k + -Ij al - + Ll (11)

I Thus, solving (9) for u, differentiating in time and substituting this result

m into (5) results in

p(h + Ts + Ts) = oij cij - qi,i + pr (12)

m Finally, substituting (12) into (11) and this result into entropy production

inequality (6) gives

I
I



I

ah

I

fp "T(cklTgk, ckl) + Ps(cklTgkoal)1T

I
ah 9(

IL- (ckl l)] gI i gk k 0i13

I

- qi( klT g,9 k)/Tjgi _> 0 (13)

where the specified variables ij T, gi, Oil' and gi are taken outside the

brackets.

Thermodynamic constraints on constitutive equations (8) are now obtained

in a manner similiar to that employed by Coleman and Mizel 119631. To do

U this, note that inequality (13) must hold for any and all processes.

Therefore, important constraints can be obtained by considering several

thought experiments. For example, at time t=to;I
THOUGHT EXPERIMENT I: a) CASE A: let ij' T, gi = 0, g = k, = constant; or

b
i b) CASE B: let ij' T, gi = 0, gl = -kl = constant.

U
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m It follows that

ah
-ag ('kl(to), T(t0 )' gk(to)) k1 a 0 and

ah
a 1 (ckl(to), T(to), gk(to)) (-kl) 0 =>

ahg
ag1  0

Similarly,

I ~a ~0 => h=h(cklT,a",) (4agi  cl k(4

m
and the above must hold for any and all processes since ui, cij, T, and gi are

specified (and mutually independent) state variables.

I THOUGHT EXPERIMENT II: let gii g, T = 0. Similarly, it follows that for

l all processes:

I 3 => o0 = o C T o u ) (15)

Note that although (15) is similar to the result obtained for elastic

materials, h is not a potential for the stress tensor for this class of

materials since the inclusion of the internal state variables, u;, causes

the Helmholtz free energy to be path dependent.

I
THOUGHT EXPERIMENT III: let gig jg iij = 0. It follows that for all

I processes:

I
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S = - -- > S=S(Eij,T,QaI) (16)

Due to equations (14) through (16) inequality (13) now reduces to

P n l ij - qigi/T t 0 (17)

I where the first term represents internal dissipation and the last term is heat

conduction dissipation. Note that the internal dissipation cannot be set to

zero because although the rate of change of the internal state variables may

be specified, the actual internal state at any time cannot be specified.

It can also be shown that [Coleman arJ Mizel, 19631I
qi = -kij gj + H.O.T. (18)

where the thermal conductivity tensor, kij, may depend on ,T, and .

Thus, if internal state variable evolution laws (8e) can be determined

experimentally, the problem will be completely specified by construction of

the Helmholtz free energy function (equation (10)).

m Now consider a special case of equation (10) which is found to be

suitable for many materials. Let

h = h(EklT,c~l ) (19)

where cIlt called the inelastic strain tensor, is equivalent to akl and is

in the case of metals a locally averaged representor of dislocation

movement. A material behaving according to equations (8) and (19) is termed a

viscoplastic material [Kratochvil and Dillon, 1970].

Expanding h in a secornd order Taylor series in its arguments gives

I
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I I

h = [A+BT'+Cijcij ijklcijkl+Eijcij+Fijklcijckl+

I4 H T+Iijc! T+kKT 21(0

+kijklCijEkl+HijCijT , i (20)

I where

T-T 0
(2

I

and To is the reference temperature at which no strain is observed.

Substituting the above into (15) results in

O j= i+D ijklck]+FijklckIl+HijT' (2
k (2

Experimental evidence suggests that in viscoplastic materials, during

isothermal processes, the inelastic strain produces negligible free energy, orI
ah ah (23)
c i j jc

so that, at constant temperature

Ih + ah .I Ah (24)

a ii j  j  '-a~i ij ij ac i ( i i ) ( 4

mil

I
I
m
I
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Substituting (20) into (23) results in

Eij + Fijklckl + GijklcIl + I - -C D

SijklCkl - HijT' (25)

m
Therefore, by inspectionm

Eij = -C. R (26)Ii 1 ij

F Fijkl = D ijkl (27)

Gijkl = - Fijkl = Dijkl (28)

1 .= H.. D. 8 (29)ij ij ijkl ki

It follows that equations (22) may be written

3 ij = R DI (0

where o R is called the residual stress at zero strain and temperature change,

m Dijkl is the elastic modulus tensor and aki is called the thermal expansion

tensor. The Prandtl-Reuss equations [Prandtl, 1924] can be obtained as a

special case of (30) by differentiating (30) in time and substituting an

appropriate evolution law for the inelastic strain tensor.

To obtain the coupled heat conduction equation differentiate (9) in time

I
I
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and substitute into the first law of the thermodynamics (equation (5)) to

obtain:I
p(A+Ts+Ti) = aij-ij - qj,j + pr (31)

m Substituting (11) into (31) gives

I
ah ) ah

ij P- ) i + (T- + S) T + pTi

h + Lh +q..- pr 0 (32)Yi ' 1n. 13 qj*I

Thus, utilizing (14) through (16) results in

I pTs + p h "n- r (33)
Iij + qj,jaQ.jI

Manipulating (8c) and (16) gives

as + as as &n (34)

B ij aT a 1j

Substituting (35) into (34) thus gives

I aLs + pT as n + h .n
T a- cij 1 aT a ii i p ac iIij ij i

+ qjj _ pr = 0 (35)3m

I
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3 Finally, utilizing (16) gives

I
@2ah 2h @2h anh .n

pTCj- pT-T + T p- ah .
ac 3 aT2  a jT * a jI 13a iiaT3 ij 1

=-qii + pr (36)

so that substitution of (15) and (18) into the above will give
ah .1 - " h .1 h

j. -. 1* - TP 1
P-I a ij -- T ij -p

am@i @ ( i  aT aT

(k T) pr = 0 (37)
13 ,3 ,1'

Substituting (20) into the above and utilizing (26) through (29) gives

mI + i T(i C!

ij iij ijkl Okl ij ij)

+ P Cv T - (kij T'j),i 0 (38)

where Cv a 2h/aT 2  is the specific heat at constant volume. The above is the

coupled heat conduction equation for anisotropic thermoviscoplastic media.

Note that for an elastic material 0 and the above reduces to the

m coupled heat conduction equation for linear thermoelastic media. Since terms

1 and 2 could be large even under non-inertial conditions, they should be

considered carefully in inelastic problems.

3 In the case of uniaxial stress states the inelastic coupling term reduces

to ac , which is the rate of hysteretic energy loss, as shown in the cyclic

stress-strain curve in Fig. 1. As pointed out by Taylor and Quinney 119341,

I
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not all of this energy is transformed into heat. For example, some mechanical

energy may be lost to dislocation rearrangement, phase change or microfracture

processes. Thus, Lee [19691 has proposed that the inelastic loss term should

be modified to

I.
m no.i*ci

nc~i~ i i(39)

where n--1 is a positive scalar function of inelastic deformation. Similar

expressions have been proposed by Lehmann [19791, Raniechi and Sawczuk 11973],

Mroz and Raniechi [1976] and Nied and Batterman 119721. However, due to the

experimental difficulties encountered in measuring such small energy losses,

this remains an open issue at this time. Since for stable materials the term

in equation (39) is never negative, setting n=1 will slightly overestimate

the predicted temperature.

For the case where the material is initially isotropic and

viscoplastically incompressible (; k=0). equation (38) reduces toI
kTii = 0CT+ pr + (3x + 2p)BTo kk - noijcij (40)

Thus, it can be seen that whereas for the elastic case (i =0

thermomechanical coupling in isotropic materials results from bulk

deformations, heating can occur in shear in inelastic media.

One can now briefly review the thermoviscoplastic boundary value problem

for the case of infinitesmial deformations. The following state

variables: o, Eij' T, ui, and cj, or 16+9n variables are sought. The

variables u, s, h and qi are not normally included in this list since they

need not be determined in order to perform stress analysis. To obtain these

I
I



I
16 + 9n variables the following equations are utilized:

1) conservation of linear momentum

Ojij + Pfi = PUi (41)

I 2) strain-displacement equations

2 (u + ) (42)Cij = 2 (i~j j~i)I
3) stress-strain-temperature relationsI

R DI
ij 3 Oij + ijkl ckl - ckl - SkI(T-To)I (43)

m 4) Isv evolution laws

Sijkl' gk, 2' 'Il) (44)

1 5) conservation of energy

3 I i -(k T 0 (45)
- oi. +Dijklklij - ci) + PCvT - (kijTj)i

Thus, these are a total of 16+9n equations. The variables p, fi, To, r,

and alj are specified data, and Dijkl, 8k j' kij, and Cv are input

I material properties. The above equations, together with appropriateboundary

conditions, constitute a well-posed boundary value problem.

Unfortunately, aij may be very difficult to construct based on experimental

observation, and the introduction of nonlinearities via oi causes solutions

to be very difficult to obtain analytically.I
I
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* APPLICATIONS OF THE THEORY

Few applications of the theory have been reported in the literature for

the case where inelastic material behavior occurs lOden et al., 1973,;

Cernocky and Krempl, 1980; Argyris et al., 1981; Nicholson, 1984; Allen, 1985,

1986; Allen and Haisler, 1986; Van der Lugt, 1986; Hsu, 1986; Banas et al.,

1987; Ghoneim, 1986; Ghoneim and Dalo, 1987; Ghoneim and Matsuoka, 1987).

This is due in part to the fact that the elastic and inelastic coupling terms

in equation (45) are in many cases for all practical purposes negligible.

I When this occurs, the problem is said to be one-way coupled, since equation

(45) becomes a single equation in temperature which can be solved

independently of the mechanical problem and the resulting temperature field

can be utilized as input to equations (43) and (44).

. There is a second reason that few applications of the theory have been

reported: because they are extremely difficult to work with. This is due to

a number of reasons, not the least of which is that there are several sources

I of nonlinearity in the resulting problem. The most common nonlinearities

occur in the ISV evolution laws (44), and these are often numerically stiff

for poly crystalline metals. Additional sources of nonlinearity may arise

from radiation boundary conditions and large deformations. In fact, the

nonlinearities appear to preclude analytic (closed-form) solutions to the two-

way coupled problem in all cases reported to date. with the exceptions of Lee

et al. [19801, Reddy 11976), and Mukherjee 11973], and in these three cases

the applications are to linear viscoelastic media. Thus, the two-way coupled

nonlinear problems lends itself well to computational solutions, in particular

the finite element method. The balance of the paper then deals with this

m procedure and results obtained using this approach.

I
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Chronologically, the first computational algorithm to appear in the open

literature was reported by Oden et al. 119731. While the authors do not

elucidate in great deal the algorithm used, they do introduce a time marching

scheme which allows partitioning of the coupled equations during each time

I step. This procedure, which appears to be used by most subsequent

researchers, bears further discussion here.

In the method proposed by Oden et al. [19731 the governing filed

* equations are first recast in a weakened variational form and applied over a

sub-domain denoted as an element. It is then assumed that the coupling terms

in equations (45) are negligible over a small time increment, and this term is

dropped from the variational heat equation. Orthogonal basis functions are

I then introduced as an approximation for the displacement and temperature

fields in each element during the time increment. The resulting equations are

of the form:

[M](u) + 1K](au} = {F} {FI) + {FTI (46)

I
I and

[ KTI(T} + [C]UT} = (QI + {QI} (47)

Equations (46) are the mechanical equations and equations (47) are the thermal

equations. The ordinary time derivatives in equations (46) and (47) are

I obtained using finite differencinq. The coupling enters the mechanical

equations via [FT), which depends on the temperature field. Conversely, the

coupling enters (47) via {QI , which depends on Eij" On each time step

this term is initially asumed to be zero and the resulting deformations are
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calculated. An iterative procedure is then used during the time step to

account for {QI}.

Unfortunately, because the numerical results obtained by the authurs Io

not contain a comparison of two-way coupled and one-way coupled results, no

results are reviewed here. However, the approach utilized in this paper has

m been utilized by most succeeding authors.

Cernocky and Krempl proposed a coupled theory in 1980, and while the

reported work considers only spatially invariable responses, it does represent

the first attempt to utilize a recently developed rate dependent viscoplastic

m constitutive model in a two-way coupled analysis.

Argyris et al. [19811 produced perhaps the most exhaustive study of

computational schemes for solving the two-way coupled problem. Like Oden, the

authors utilize the semi-discretized finite element method for both the

thermal and mechanical analyses. Furthermore, they utilize partitioning, with

the thermal analysis performed first on each time step and then utilized to

approximate the mechanical response. Although they point but that for weakly

I coupled problems no interaction is required on each step, they include in

m their algorithm an iterative procedure for strongly coupled applications.

The authors discuss in some detail the importance of the so-called " -

effect," in which the effect of thermal contraction causes a perceived

"heating effect." This effect can be seen by first defining the elastic

strain tensor as follows:

m E
Eij - Cij - .i (T-To) (48)

I
Thus, for an inelastically incompressible material contracting the above and

rearranging results in

I
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Ekk = k + aKK(T-To) (49)

I DiffereniadLigg the above in time and substituting intu (40) gives

kT,ii = pCT + pr + (3x + 2 )T k - jj (50)I
wherem

C P [1+3(3x + 20a ToT (51)

I Thus, the thermal expansion effect can cause the apparent heat capacity

to be magnified considerably. The authors advise that this term should be

handled in the form described by equation (50) because the form given in

equation (45) can lead to numerical instability of the time marching scheme.

I An interesting numerical result is obtained in the paper by Argyris et

al. 119811. The time marching iterative scheme described above is applied to

a thick-walled cylinder that is pressurized with an internal pressure

pi = 200 N/mn2  and subsequently quenched from an initial temperature T=320
0C

to a final temperature T=200C. A simplified model is used for the ISV

evolution laws. Temperature, radial displacement, and equivalent stress

histories are shown at the outside wall in Figs. 2 through 4. Similar results

I are obtained at the inside wall. It is interesting to note that the coupled

thermoviscoplastic result is significantly different at long times from the

uncoupled result, thus indicating the importance of including two-way coupling

in relatively slow processes such as are found in this example. However, the

authors point out that a substantial part of the coupling results from the

m s effect.

I
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Beginning in 1985, Allen published a series of three papers dealing with

thermomechanical coupling in viscoplastic uniaxial bars. Using the

I viscoplastic constitutive theory proposed by Bodner and Partom 119751, he

predicts the stress in a uniaxial bar as shown in Fig. 5 for the input strain

history shown. Since the uniaxial bar is assumed to be adiabatic, the

response is spatially invariable, and the predicted temperature shown in Fig.

6 represents an upper bound of the actual temperature for n=1 [Allen, 19851.

Recognizing that there is significant heat loss in a uniaxial bar, Allen

11986] produced a one-dimensional fully coupled finite element model for the

I uniaxial bar problem. The spatial discretization was accomplished by assuming

a second order displacement function in each element, along with a first order

temperature field. This insured numerical stability and accuracy via

compatibility of the total and thermal strains in each element. Unlike the

computational approach taken previously [Oden et al. 1973; Argyris et al.

19811, the author chose to retain full coupling in the governing equations so

that the resulting finite element equations are of the form

IK1f- Ui {AF) (52)

I
AT

Thus, unlike equations (46) and (47), the temperature and displacements occur

on the left-hand side of the equations. Unfortunately, this procedure results

I in a highly complex algorithm which is sufficiently complicated that existing

uncoupled codes cannot be utilized. For example, the stiffness matrix IKI is

not symmetric. The author found this approach cumbersome and does not

recommend it, especially for multidimensional problems.

Using the above computational scheme Allen compared results for a fully

insulated uniaxial bar to one imbedded in massive grips at 10050K. The
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resulting predicted temperatures for two different monotonic strain rates are

shown in Figs. 7 and 8 11986). As expected, the non-adiabatic temperature

change is bounded by the adiabatic result. A typical plot of temperature vs.

axial location in the bar, as shown in Fig. 9, demonstrates that the

I temperature gradient occurs in a very small boundary layer near the grip. The

final result in this paper, shown in Figs. 10 and 11, is for the case of a

uniaxial bar subjected to low cycle fatigue. It is found that, whereas the

temperature rise is approximately 3.7K for each cycle in the adiabatic case,

the bar with fixed temperature at the ends heats up only about 1.0'K per

cycle, thus indicating that flux of heat at the boundary can significantly

diminish the effect of thermomechanical coupling.

In the third paper of the series, Allen and Haisler [19891 included the

I effects of radiation boundary conditions on the cylindrical surface of the

bar. They determined that inspite of the significant heat loss provided by

3 radiation boundary conditions, an aluminum bar subjected to cyclic loading as

shown in Figs. 12 and 13 experiences substantial heating both with anodized

I surface (CASE II) and when painted with a high emissivity coating (CASE I).

The authors concluded from this research that material inelasticity in large

space structures should be considered carefully as a means of passive damping

because it is difficult to dissipate heat generated via thermomechanical

coupling.

Recent results have been reported also by Ghoneim and coworkers IGhoneim,

1986; Ghoneim and Matsuoka, 1987, Ghoneim and Dalo, 19871. Ghoneim uses

essentially the same finite element discretization procedure as that developed

by Oden. Using a simplified viscoplasticity model he obtains results for the

uniaxial bar problem {Ghoneim and Matsuoka, 19871 similar to that previously

obtained by Allen. However, he goes a step further by producing a two-
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dimensional prediction of the response of a flat coupon during a compression

test. Figure 14 depicts effective stress and temperature contours in one

I quadrant of the specimen for sucessive strains E=0. 3, 0.6, 0.9 and 1.2%,

respectively (Contour lines 1, 2, 3,... are 300, 350, 400, ... MPa for the

stress and 0.0, 0.5, 1.0, 1.5°K,... for the temperature, respectively).

Ghoneim 11986] modelled a thick-walled cylinder similar to that

previously considered by Argyris et al. [19811. However, Ghoneim considers

the response of the cylinder to an instantaneous thermal pulse. Since the

time duration is very short, he points out that the predicted change in

temperature is strictly due to thermomechanical coupling. Figures 15 and 16

show the stress history and temperature history at the inner surface of the

cylinder ( E is the effective stress). The large difference between the

temperature predicted for the elastic and viscoplastic cases is remarkable.

The final result to be discussed herein is due to Hsu (1986]. He uses

I essentially the same fully coupled algorithum as that reported by Allen.

However, he has developed a two-dimensional finite element code using four-

node quadrilateral isoparametric elements. He models one quarter of a rod in

uniaxial tension and considers the temperature rise in the bar for a monotonic

load and unload sequence. As shown in Fig. 17, he reports the effects caused

by the n factor discussed in equation (39) ( A=1-n ). As expected, the

predicted temperature rise decreases with increasing A.I
m CONCLUSION

Significant advances in the theory and analysis of thermomechanical

coupling have been made in this century. However, although thermomechanical

coupling is now a well-known phenomenon in inelastic solids, several issues

remain open at this time. Among these are:
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1) the thermodynamics of nonequilibrium processes have not yet been

clearly identified;I
2) the relative contribution of the n factor is not yet resolved;

3) computational algorithms, though proposed, have not been studied for a

broad array of problems; and

I
4) the important issue of when coupling can be neglected has not been

I resolved.

I For these reasons, further research would appear to be fruitful on this

I subject.
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Fig. 1. Hysteretic Strain Energy Loss During a Cyclic Uniaxial Test

Fig. 2. Temperature History at the Inside Wall of Quenched Cylinder

(Courtesy of Hemisphere Publishing)

Fig. 3. Radial Displacement History at the Inside Wall of Quenched Cylinder

(Courtesy of Hemisphere Publishing)I
Fig. 4. Equivalent Stress History at the Inside Wall of Quenched Cylinder

* (Courtesy of Hemisphere Publishing)

Fig. 5. Stress-Strain Behavior of INT0 at 10050K (1350 0F) Under Cyclic Load

I with Stress Relaxation (Courtesy of Pergammon Journals Ltd.)

Fig. 6. Predicted Temperature Change for IN 100 at 10050K (13500 F) Subjected

to Cyclic Load History Shown in Fig. 5 (Courtesy of Pergammon Journals Ltd.)

U Fig. 7. Predicted Temperature vs. Absolute Strain for Monotonic Deformation

Histories (i = ±0.00142 sec- 1) (Courtesy of John Wiley & Sons, Ltd.)

Fig. 8. Predicted Temperature vs Absolute Strain for Monotonic Deformation

Histories (i =±0.000142 sec-1 ) (Courtesy of John Wiley & Sons, Ltd.)

Fig. 9. Temperature vs. Spatial Location for Various Times for Constant

Strain Rate i=0.00142 sec -  (x=0.3175 is the midpoint of the bar) (Courtesy

of John Wiley & Sons, Ltd.)

Fig. 10. Stress-Strain Curve and Strain Input Curve for Cyclic Load (Courtesy

of John Wiley & Sons, Ltd.)

Fig. 11. Temperature Change at x=L/2 vs. Time for the Cyclically Loaded Bar

Described in Fig. 10 (Courtesy of John Wiley & Sons, Ltd.)

I Fig. 12. Cyclic Stress-Strain Curve at x=L/2 for Case I Coating Loaded at

5Hz. (Courtesy of American Institute of Aeronautics and Astronautics)
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Fig. 13. Temperature vs. Time Curves at x=L/2 for Loading at 5Hz (Courtesy of

American Institute of Aeronautics and Astronautics)

I Fig. 14. The Predicted Stress and Temperature Change Fields for the

Compression Test at Different Stages of Loading (Courtesy of Pergammon

m Journals Ltd.)

3 Fig. 15. Transient Response of the Radial and Hoop Stresses at the Inner

Surface of Thick Walled Cylinder (Courtesy of Hemisphere Publishing)

Fig. 16. Transient Response of the Effective Stress ( E) and Temperature at

the Inner Surface of Thick Walled Cylinder (Courtesy of Hemisphere Publishing)

Fig. 17. Temperature Rise in the Rod Induced by Applied Mechanical Load

m (Courtesy of Allen & Unwin, Inc.)
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ABSTRACT

Over the past two decades a number of thermomechanical constitutive

theories have been proposed for viscoplastic metals. These models are in most

cases similar in that they utilize a set of internal state variables which are

I locally averaged representors of microphysical phenomena such as dislocation

rearrangement and grain boundary sliding. The state of development of several

of these models has now matured to the point that accurate theoretical

solutions can be obtained for a wide variety of structural applications at

elevated temperatures.

3 The purpose of this paper is threefold. First, the fundamentals of

viscoplasticity are briefly reviewed and a general framework is outlined.

I Second, several of the more prominent models are reviewed in some detail.

u Finally, some comparative results are given to experimental evidence for a few

of the models, and conclusions about the efficacy of the models are drawn from

m these comparisons.

I
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INTRODUCTION

Since World War II there have been an increasing number of circumstances

m wherein structural materials are required to operate at very high

temperatures. Perhaps the first large scale example of this occurred in the

nuclear power industry, wherein temperatures in excess of 2000°F are

3 common. Recently, interest in the National Aerospace Plane, wherein

hypersonic shock interaction causes predicted temperatures in excess of

30000F, has enhanced interest in this subject. The quest for more efficient

gas turbines has also forced operating temperatures up. Thus, since

experimentation in such hostile environments is extremely expensive, it is

I desirable to produce accurate theoretical models for structural components

constructed from viscoplastic metals.

In all of these cases the structural materials commonly in use experience

a substantial amount of inelastic constitutive behavior. Indeed, they are

I history, temperature, and rate dependent, as well as highly nonlinear. Hence,

it is clear that any successful modelling attempt will be extremely complex in

nature.

1 The most recent advances in constitutive theories to predict the

inelastic behavior of structural materials have been the incorporation of the

effects of temperature and rate dependence into the stress-strain

relationships. The ability to predict the temperature and rate dependence of

structural materials used in elevated temperature applications is especially

important to the aerospace industry wherein substantial weight savings can be

accomplished if safety factors can be reduced by the use of accurate analytic

models. Most metals become viscoplastic, i.e., exhibit rate dependent

inelasticity at temperatures above about four-tenths of their melting

m temperature. These materials are more intricate than elastic-plastic

m2
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Imaterials in that the inclusion of rate dependence represents a significant

m increase in complexity of the mathematical model required to describe the

observed material behavior. This is evident because in the classical rateL

independent plasticity theory of metals the only parameter required to

characterize the plastic strain is i, a history dependent scalar material

m property that relates inelastic strain rate to stress through the flow rule,

which may be obtained experimentally from a single phenomenological uniaxial

stress-strain curve. However, when the material becomes significantly rate

dependent the uniaxial monotonic stress-strain curve is no longer unique.

Therefore, it becomes necessary to construct a mathematical equation

governing i. This equation can only be constructed by obtaining considerable

experimental information about the response of the material to changes in the

I independent variables such as strain, strain rate, and temperature. The

m experiments required to obtain this information are usually cumbersome and

expensive.

m Historically, there have been two distinct approaches to the modelling of

inelastic materials: 1) the functional theory [11, in which all dependent

3 state variables are assumed to depend on the entire history of the specified

observable state variables; and 2) the internal state variable (ISV) approach

[21, wherein history dependence is postulated to appear explicitly in a set of

m ISVs. Lubliner [3] has shown that in most circumstances ISV models can be

considered to be special cases of functional models. Because the internal

state variables are readily identifiable in metals, most models currently

under development are of the ISV type. This form has the added benefit that it

m is also usually more computationally tractable than the functional form.

m This article will focus on several of these models which have shown

promise for predicting the complex stress-strain response of metals at

3I
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I elevated temperature. After establishing the general framework for a

constitutive model using the ISV formulation, several state-of-the-art

thermoviscoplastic models will be reviewed along with examples of the model

predictions compared to experimental results.

I SYMBOLS

a oij stress tensor

Dijkt elastic modulus censor

mki strain tensor

Ck creep strain tensorI

EII inelastic strain tensor

£P plastic strain tensor

E T thermal strain tensor

a 2  drag stress

L3ij back stress tensor

mII p  general set of internal state variableski

h2, h3  hardening parameters

3 r2, r3  recovery parameters

i inelastic flow parameter

I T temperature

* 4ij damage tensor

ij deviatoric stress tensor

a3ij deviatoric back stress tensor

J 2 second deviatoric stress invariant

I-
m p rate of inelastic work = aij Cij

4
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IGENERAL THER14OVISCOPLASTIC CONSTITUTIVE MOOEL FRAMEWORK

The concept of ISV's, sometimes called hidden variables, was apparently

first utilized in thermodynamics by Onsager 14,5], and numerous applications

have been recorded in the literature over the last forty years 12,6-14]. A

general framework for an ISV formulation of a thermoviscoplastic constitutive

3-model can be developed by following the thermodynamic approach described by

Coleman and Gurtin (2]. Historically, attempts to model rate dependence began

with extensions of rate-independent classical plasticity theory. In these

*attempts the inelastic strain was "uncoupled" into rate-independent plastic

and rate-dependent creep components to obtain

I1= D ijki (eki - Eki - - kI) (1)

Ultimately, these attempts failed due to the fact that rate-independent and

Irate-dependent inelastic deformations are caused by the same microphysical

mechanism, predominately dislocation movement. Thus, a more salient approach

evolved using an approach in which the plastic strain and creep strain are

"unified" into a single inelastic strain, Ek The general form of the model

for a metal is thus described by the following stress-strain equation of

Istate:
aij = D Ek ) (2)

Although the strain, ck, and the thermal strain, cTk , are normally

specifiable, the inelastic strain tensor, representing a locally averaged

measure of the distance traversed by dislocations, is not. Therefore,

equation (2) must be augmented by an ISV evolution law (also sometimes called

Ithe flow law) of the form:

5
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mI. = U (o I

(ijj - O31j) (3)

where i is a complicated history dependent function of state. For example,

the Prandtl-Reuss equations 115,16] utilized in rate independent applications

m may be obtained as a special case by differentiating (2) in time, substituting

(3) into this result, and setting aij to zero.

For rate dependent circumstances, however, the equations must be further

augmented by additional ISV evolution laws to account for the diffusive nature

of dislocation mechanisms at elevated temperatures. These are of the form:I
I = h2 ( kE' T, C) - r2 (Ek T, a) (4)

m 3iJ = h3 (allT, k) - r 3 (k' T, 01) (5)

where the drag stress, c2, is an ISV related to the number or density uf

dislocations and the backstress, a3ij, is an ISV related to the residual

I stresses at the microstructural level produced by the dislocation

arrangement. The functions h2 and h3 represent the hardening terms in the

drag stress and backstress, respectively, due to loss of dislocation mobility,

whereas the functions r2 and r3 represent the recovery terms in the drag

stress and backstress, respectively, due to recovery of dislocation

mobility. In some applications it may be necessary to append an additional

internal variable, a4ij' called a damage parameter and representing the

effects of grain boundary sliding and microfracture [17-20].

The mathematical expressions for the ISV's and the flow rule, equations 3

through 5, are typically determined phenomelogically by curve fitting data

I
6
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m obtained from a prescribed set of complicatca experiments to this form. The

precise experiments required to obtain the models depend on the theory being

utilized. However, these experiments are typicaily complex in nature [21-

231. Since they are normally performed at temperatures in excess of 1000'F,

they require that sophisticated furnaces be used, such as the one shown in

Fig. 1. In addition, many of the models require that cyclic tension-

compression tests be performed such as the one shown in Fig. 2, so that a

I highly aligned testing machine is required in order to avoid buckling of the

specimens.

REVIEW OF CURRENT MODELS

m In this section several of the more prominent unified models will be

reviewed, and because the uncoupled models possess limited modelling ability,

m they will not be covered. The first concerted attempt to model the inelastic

strain rate in a rate-dependent setting appears to have been due to Bodner and

co-workers [17,18,24-36]*, and an indication of the complexity of this problem

m is that they are still actively pursuing this model. Since 1975, there has

been a veritable explosion of models such as Hart [36,371, Miller and co-

workers [19,38-48], Valanis [49,50], Robinson 151-57], Walker and co-workers

[20,32,35,36,58,59,601, Krempl and co-workers 161-66], Krieg and co-workers

m [36,67], as well as others [68-781. Doubtless there are numerous efforts we

have overlooked, and the authors apologize for any oversight on our part.

In a paper of this limited scope it is unrealistic to expect that an in-

3 depth review can be reported on each of the models. Therefore, we have chosen

what we hope is a reasonable and expedient dissemination method. First, weI
Although a promising model proposed by Valanis had been previously reported,

it was rate-independent at the time of Bodner's work.
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m will discuss each of the models briefly, and we have encapsulated a summary of

each of the models mentioned above (in uniaxial form) in Table I. Because

many of the models have appeared in several forms, in this table we have

chosen a relatively simple version of each of the models. Second, we have

attempted to summarize the capabilities of the models in Table II, and to

review the experimental requirements in Table III. Finally, we have

undertaken to discuss recent advances and review in somewhat greater detail

m the models of Bodner, Miller, and Walker.

Because the scope of this paper is limited, we are unable to pursue all

of the important issues regarding this subject. Readers who are interested in

further study on this subject will find a far more detailed discussion of

recent advances in viscoplasticity in reference 36, as well as in the

* bibliography at the end of this paper.

In this discussion the models are reviewed only in uniaxial form because

in virtually all cases they are converted td multiaxial form by using J2

theory in conjunction with Drucker's postulate [79]. We should also point out

that we have utilized a common terminology due to the fact that each author

* uses different notation.

Probably the simplest model to date was proposed by and Krempl and co-

I workers [61-661. Because this model does not contain evolution laws for the

back stress and drag stress, it is best used for monotonic loadings.

The model proposed by Valanis [49,50] is built on a single integral

framework which makes it quite different in form frc:n equations (2) and (3).

However, as pointed out by Schapery 180], when this so-called "endochronic"

theory is used with an exponential kernel function, the Prandtl-Reuss [15,16]

equations can be recovered. Although Valanis' model is actually capable of

producing much more general results, a single exponential is usually used, so

I
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m that it reduces to equations (2) and (3) when Laplace transformed in the

endochronic time scale.

An interesting and potentially very useful model has been proposed by

Krieg, et al. [671. The model appears to have been one of the first to include

both drag stress and back stress terms. However, the authors moved on to

other things and the model was not improved for about a decade. Recently, a

second generation of the model has been proposed 136].

Robinson 151-571 has proposed one of the most complex and advanced models

to date. His model is distinguished from the other current models both in

that it possesses a yield criterion similar to that used in classical

plasticity, and that it has been proposed in multiaxial form for orthotropic

media such as metal-matrix composites.

m Hart's model [37] is distinguished by the fact that the drag stress is

assumed to be a constant, and it possesses an ISV called hardness which

affects the back stress evolution law. Recent advances of this model have

m also been reported in reference 36.

Bodner's Model

As mentioned earlier, Bodner's model [17,18,24-361 appears to have been

the first viable unified model proposed for viscoplastic metals. Although

early versions of the model were somewhat primitive, it has remained at the

forefront of technology via timely modifications. The initial model did not

contain a drag stress, 03ij , and although the current version does include

one, it is included in a significantly different way from other current

m models. Bodner calls it an anisotropic hardening parameter, a3' and it occurs

in the inelastic strain rate equation as a scalar variable. Thus, the

resulting evolution laws are:

9
9
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'I =2 1 fZ2n,73 D. exp {-2 !1 } sgn a (6)

Z-- 2 -o 2  3 sgn o (7)
Z~~ ~ 02-02+ 2

;L2 = m1 Z1 - Z1 p - A-1  Z 2 Zl 1r1  (8)

023, 
2m -A Z03 = m2 [Z3 sgn a - G3 sgn a] p - A2 ZI  r gn 3 (9)_ A2  3 r2J sno 9

I
where DO , n, m1, Z1, Z2, A,, rl, m2, Z3, A2, and r2 are material constants.

The flow law is exponentially based as seen in equation (6). The model

gives a limiting strain rate in shear of Do . The term -mlZI W p is a dynamic

recovery term for 03 in the isotropic growth law (8) and

-A Z1 [(a2 - Z2) Z1  1 is a static thermal recovery term. B is a uniaxial

representation of a second order tensor in the multiaxial state which models

directional or anisotropic hardening. a3 is assumed to act as an isotropic

variable on an incremental basis. Equation (7) shows that Z can experience

large changes in magnitude due to the sgn a function as the stress changes

sign. This could cause numerical problems if the B variable is of the same

order of magnitude as the a2 variable. The evolution law for B has the same

components as the evolution law for D.

Bodner's model is seen to use the rate of plastic work, Pp. instead of

inelastic strain rate as the measure of work hardening. This is designed to

allow for better modelling of strain rate jump tests. The modification used

to account for the strain aging effects was patterned after Schmidt and

Miller's solute strengthening correction. The constant Z3 in the 03 evolution

law was written in the following form:

I
10
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m 3 = Z4 + Z5f (4) (10)

f(il) = F exp {- [log(i ll) - log(J)12 (1)

where F is the maximum correction, J is the strain rate of maximum correction,

and a is the width of correction.I
m Miller's Model

Miller's model [19,36,39-481 is probably the most complex model available

at the time of this writing. It is capable of accounting for a wide range of

physical phenomena, including solute strengthening and cyclic strain

m softening.

Schmidt and Miller's evolution laws have the following form:

(2 {sinh )3 1.5 n) sgn (0- 3) (12)I =2'{sn + F Sol ( 3

= H1 I i - H1B, {sinh (A Ic31)}n sgn (c3) (13)

A2
mI2 = H2 [l I(C2 + I 3I- A 3) - H2 C2 B' (sinh (A2  3n (14)

F = F exp ( - I log 1)2 (15)IB

where B', n, H1 , A,, H2 , C2 , A2, F, J, and a are material constants.

The flow law has the form of a hyperbolic sine. This form was chosen to

model creep response better. The same form is found in the static thermal

recovery terms of the backstress and drag stress evolution laws. The drag

11
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U stress hardening term contains a hardening term, a dynamic recovery term, and

a term which couples drag stress hardening to backstress magnitude. These

three terms provide the proper cyclic, hardening, softening and saturation

behavior. The same non-interactive solute strengthening correction (Fsol) as

mentioned earlier is seen in this model.

I
Walker's Exponential Model

I The growth laws for Walker's exponential model [20,32,35,36,58,59,601

have the following form:

exsgn (a 03) (16)

m 03 = fn 2 - B (in 3 + n4 exp (-nsIlog (.L)I)1 R + n (17)

I 02 = DI + D2 exp (-n7 R) (18)

R = jI' (19)

where B, n2, n3, n4, n5, Ro, n6, D1, 02, and n7 are material constants.

m This version of Walker's flow law is based on an exponential function.

The term n2  I is seen to be a work hardening term in the back stress growthI2
law. The term a3 in3 + n4 exp(-n 5 ilog(IRI/Ro)1i R is a dynamic recovery

term. Negative strain rate sensitivity effects can be modelled with the

term n4 exp (-n5 1log(1Rl/R 0 )J). Back stress thermal recovery is handled by

the a3 n6 term. Drag stress hardening is modelled through the D2 exp (-n7 R)

term. No provision is made for drag stress recovery in this model.

I 12
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COMPARISON OF MOOEL PREDICTIONS TO EXPERIMENTAL RESULTS

In most cases, the models are described by a set of ordinary differential

equations in time which are mathematically "stiff". The definition of

mathematical stiffness is that if the solution is expanded in an exponential

series in time, at least two of the eigenvalues will differ by many orders of

magnitude. A characteristic of stiff differential equations is that they

I cannot be efficiently integrated in time by standard integration schemes such

as Runge-Kutta methods. Numerous intricate algorithms have been developed for

integrating equations (3) through (5) in time [81-86]. Oftentimes, it is most

efficient to use a simple Euler forward or backward scheme, where accuracy is

achieved by taking very small time steps, as shown in Fig. 3 [81]. when

solving boundary value problems using the finite element method, it is

normally possible to obtain convergence on each displacement increment by

I subincrementing the Euler integration at each integration point.

* Many of the models mentioned in the previous section have been compared

both qualitatively and quantitatively to one another as well as to

experimental results for a variety of materials [87-92]. The accuracy of

several of the models is demonstrated for INCONEL 718 under two constant

I strain rate conditions at 1100°F (593 0C) in Figs. 4 and 5 [921. A complex

load history is demonstrated in Figs. 6 through 8. In this example INCONEL

718 is subjected to the strain history shown at the bottom right hand corner

of each figure [92].

CONCLUSION

The complex task of predicting the response of viscoplastic metals has

now reached a state wherein reliable structural analysis is sometimes possible

1931. However, the accuracy of predictions still depends on a number of

13I
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complicated factors such as material type, loading conditions, thermal

environment, numerical accuracy, and the constitutive model being utilized.

m Although this area of research has certainty reached fruition, it has not yet

reached full maturity.
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1

TABLE III. REQUIRED NATERIAL PARAMETER CHARACTERIZATION

m Cernocky and Krempl Constant Strain Rate Tensile Tests
with Intermittent Hold Times

l Relaxations Tests

Krieg, Swearengen, and Rohde Stress Drop Tests
Constant Strain Rate Tensile Tests

Bodner et al. Constant Strain Rate Tensile Tests*
Creep Tests

Walker Constant Strain Rate Cyclic Tests
Constant Strain Rate Tensile Tests

Miller Creep Tests
Constant Strain Rate Cyclic Tests

l Constant Strain Rate Tensile Test

Hart Relaxation Tests1
Robinson Stress Drop Tests

Valanis Constant Strain Rate Tensile Test*

*Represents Simplest Form of the Model
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LASER/STRUCTURE INTERACTION - A ONPARISON
OF THEORY TO EXPERIMENT

P.K. lubrie*

D.N, Allen
s"

H.1. Chang
Texas AA1 University

College Station, Texas 77843

Abstract rradial coordinate direction

A comprehensive experimental program has
been developed to study the transient response of Rj finite element external force
a viscoplastlC plate sub.ected to rapid heat components

input. The experiments consisted of irradiating
a clamped plate of Hastelloy k with a high energy t - time

15 Kw c.w. CO2 laser, with displacement and
temperature serving as measured data. A T - temperature
theoretical model is also being developed for
comparison to the experimental results. The Tr - reference temperature at which

model assumes one-way thermomechanical coupling: radiation is zero

that is. it is assumed that the temperature field
is independent of deformation but not vice u'vw - components of plate displacement
versa. The thermal analysis is nonlinear via

radiation boundary conditions and temperature u1  - components of displacement in

dependent thermal conductivities. The structural Cartesian coordinates

analysis includes geometric nonlinearity and
material viscoplasticity. The experimental 2 - axial coordinate direction
procedure and an abbreviated development of the
model are described in this paper. a - thermal absorptivity

Nomenclature 61 - drag stress

Ae  - area of two-dimensional finite element 62 1j - back stress tensor

IBL) - matrix relating linear components of ex.0 - components of plate rotation

strain and deformation Yr -boundary of a domain

U NL -- matrix relating nonlinear components

of strain and deformation r - boundary of e finite element

Cp - coefficient of specific heat at c - thermal emissivity
constant pressure

DI~j - elastic modulus matrix 
Cii - strain tensor

ft - components of body force per unit mass 6: - plate mid-surface rotations

k - thermal conductivity

" j - components of finite element mass - elastic strain tensor

matrix

nr., nz  - components of unit outer normal vector cii - inelastic strain tensor

in cylindrical coordinates T

w, M - components of plate midsurface forces i - thermaandl moments per unit length

Na emexa - nodal Components of plate rotation

Pi~ finite element shape functionsx

- heat flux input - normality coefficient for inelastic

Strain rate

I Lecturer. Aerospace Engineering 0 - mass density

-- Professor, Aerospace Engineering

Member A] A a - boltzman's Constant
m" * Research Engineer .Aerostructures, Inc. . t e st no

Arlington Virginia ijensor

I
I



Ii deviatoric stress tensor Thermal Analysis

An axi ymmetric finite element model,
interior of a domain developed to include nonlinear radiation bounodry

conditions, Is used to construct the temperature

Introduction field as a function of r and 2 for each time
step. A typical two-dimensional axisymmetric

The transient response of an aerospace heat transfer mesh is shown in fig. 2.

Structure exposed to rapid heating may be vastly The governing heat transfer equations are as
different from that produced under steady state follows:

conditions. For applications such as gas-turbine al aT _ r at
combustors, rocket nozzles, space structures, and PCpr -t r ) -(kr -L) - in 0 (1)

the like, large temperature gradients are

Commonly induced in a very short period of J7t 4 4
time. however. due to the complex and severe kr - k nr

4 
1r1 n2 • qor * cor(Tr - 7

4) on r (2)

enviroment. little experimental data are
available for use in developing new methods of Equations (1) and (2) may be cast into a

analysis where material inelasticity occurs in Galerkin finite element formulations. Since this

the structure. Therefore, an experimental part of the model exists in the open

program was established to investigate the literatures. it is not covered in detail here.

response of a metallic plate undergoing rapid
heating with temperature and displacement as the The resulting elemnt equations are of the
primary variables of interest. The parameters form

varied in the experiment included: 1) plate
thickness; 2) heat flux; and 3) duration of heat C 1 7. a1 3 iT q1  (3)

I fluxA solution algorithm, has been developed by where

the authors for predicting the transient response
of plates when subjected to rapid heat input. C1 . " 0CpNiH rdA e (an)

While the model itself is not the subject of this. e
paper, it is presented in abbreviated form and is aN.
used to compare theory to experiment. The IN rk dA
solution algorithm makes use of one-way ajj-J (_ rk a z n)

the, eChanical coupling (it is assumed that the e
~~~temperature field is independent of deforutton), 3tNl)Nrl

thermoviscoplastic responsee and geometric h o (4b)

nonlinearities. The finite element method is re

used in a two step process to compute the plate
response. The thermal analysis is performed 4
first, taking into account such things as q1  f Niqordr * f NitcoTr rdre (4c)

nonlinear effects due radiation heat exchange and Te  re
temperature dependent material properties. the
results are then used as input to the structural A linear triangular axisywmetric element is used
analysis where nonlinear material response, using in the analysis. Equation (3) for each element

Bodner'S' and Walker's2 constitutive models and is assembled to give the following global system

large rotational plate theory are used to compute of ordinary differential equations:

plate deformation as well as stress and strain.
Both the experimental and modelling programs are Id JT) * IAI) T - (Q) (5)
described in the following sections. The Crank-NiCholson scheme is then applied

Model Development temporally to obtain the temperature field with
time6.

The model is presented in abbreviated form
in this section. Further details can be found in Structural Analysis

references 3 and 4. As shown in the flowchart in
Fig. 1, the solution algorithm is constructed in In the structural analysis. Von Karman

two stages: the thermal analysis and the theory7 IS assumed for the thin plate bending

structural analysis. On a given time step, the motion 
,  

and material nonlinearity and

thermal loads are evaluated. Then the viscoplastic constitution are included in the

temperature field is solved by the finite element model. The material nonlinearity if introduced

method. Using this temperature field, along with via the inelastic strain tensor. c j. which is

the inelastic strain increment evaluated from the described in the next section.

previous time step, yields the thermal strain. The strain components are defined as

The thermal strain results in an unbalanced load 0 1 , 4

from which the deforation field is Cii j L (u 'j uj'iS
approximated. An iterative procedure is utilized
to bring the solution to convergence for a given
time step. The solution is described in further
detail below. * I (u3,u3j) 

+ 
z'iJ Ij -j 12

Utilizing the above in a standard laminate scheme
will result in

2
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go . &I . g0 K; 0 €
T3 - -o*~ (7) .

M IKNL  I V ISNLI Iisl [BNL dve (16)

b ere
(Also. (R) is the external load vector and

( 13 i.j .Dt 3 ) -h f 0j(l.z.2 ) dz e1 T I T

".I Vt
Note that the coupling Matrix III does not
disappear due to the through thickness variation (aD! IL

0 
* z. - i )) dV (27)

of elastic modulus. Dij, which is temperature n
dependent. IF2)  e f IENLI R(-ID t*at A 1 I 

t 
I

The governing eQuations for the plate motion I V e
are thus derived by satisfying the conservation
of linear and angular momentum 181: IADI 1 i z dV

X.x  yx.y tt  Solving equation (13) by the Newmark

integration Scheme will give the firstNxx 4 Py.y Ut t  0(10) approximation of (aug at time t t. 1he Newton
kapnson iteration method will give convergence to
the nonlinear solution),'.

IliJ * i ii ij ))Thermomechanical Constitutive Models

42 - In order to prescribe the forcing functions
(f2 ) and (F21 defined in equations (17) and (1)

-it Is necessary to determine the inelastic strainS J )J increment, at. This is accomplished by

2( -,integration 'f the selected viscoplastic
constitutive model. The authors are currently

p + Nxwxx 4 2Yxy*xy N y " 1y , t 0 (22) using Walker's model', as well as the
anisotropic hardening form of Bodner's
model)O. These models are compared critically in

Integrating equations (9) through (11) against reference 11.
variations in the components of the displacement
field will result in the following variational Bodner's model assumes
principle. -I

j,6u (N N - Out t J xdy4 cii " ii (mA (rXn x p y . t whereas Walker's model proposes

f 6v "(Xyx Nyy OV ) dxdy i " (20)

j A flu l ( I 
l  where

A W 1j(; C" I (ij. 11- 1211)

* v ij 2 C . -1 )]. and the above is supplemented by an additional
j "3 3 *yy+ set of evolution laws of the form

I - , .a(22i31-j *3j(Cj )) xY + )II
i x i j - ij (c1,. I'd(22

Nxw. xx * M xy y - ow, ) dxdy - 0 (12) Equations (19) and (22) are typically

Snumerically stiff, so that numerical integration
to obtain tj4 is not straightforward'2. Bodner's

Incrementing the field variables, neglecting model is currently being integrated using Euler's
the third and higher order terms of the forward method, whereas Walker's model is
displacement increment, and applying finite integrated using Euler's backward method'). Both
element discretization results in models are subincremented on each time st P in

order to produce accurate values for ac1 j onIMIu)t
- a

t +KJi u) - dR3t t
-  

1  - (F2) (13) each time increment.

where [4J is the mass matrix and Experimental Prooram
mKl - IKI I IKL (14) In order to verify analytical models

NL L currently being constructed, an experimental

program has been developed to investigate the

e transient response of a viscoplastic plate
[KL) I J IBNL I IDIt tIBLI dVe  (15) subjected to rapid heat input. Of particular

o I Ve  interest is the measurement of displacement and

3
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temperature fields for a rectangular plate of the specimen surface while it was being
SpeCimen undergoing rapid heating. The heated. In addition, instrumentation for
experimental program is divIded into two phases: measuring temperature and displacement fields, aS
1) a low energy (lOOU/in ) input phase being well as high speed phntographic documentation
conducted at Teas AIM University; and 2) a high were used and will be discussed it, detail below.
energy (>1KW/In ) input phase being performed at
the Air Force Wright Aeronautics Laboratories A specimen support fixture was designed tousing the LWtEL I (Laser-haerdened Mlaterials 1Iepose Clamp-like boundary conditions along each

Evaluation Laboratory) facility. dge of a rectangular plate specimen. TheI suPerStructure of the fixture was fabricated from

Low Ener y lesti ur 06-16 aluminum to support the Specimen in the
vertical position, as shorn in figs. 4 and 4c.

The low energy. semi-rapid heating An insert mace of 3D4 stainless steel serves both
experiments Make use of a bank of quartz lamp, a support stiffener and water acket. A total
to irradiate the plate specimens. ohe purpose of wste water coolng yste IS used to provide a ata

resare t expecteprimentaf l frsulthsev anor be osan lt budr

gs a simulation of the high energy experiments; temperature c (hetmocouples were attached to each
pedicond, they produce c emperature and half Of the insert ct the mic-pOsition,
displacement fields which change at a much slower approximately 0.5 in away frm the specimen, torate. Therefore, valuable information with record any temperature variations.

Iregard to expected experimental results can be
gained. in addition to verifying model The two piece (with the inserts in place)
predictions under less severe tonditions, picture frame style fixture securely clamps the

specimen in position, using 24 socket head cap
The heat source for these experiments are screws torqued to 120 in-lbs. An off-set,

tubular Quartz lamps with tungsten emitters. A staggered screw pattern is used to ensure a
circular heat target zone is obtained by uniform clamping zone. In addition, the fixture
shielding excess energy from the specimen via a is indexed with hardened dowel pins so that
water cooled orifice plate, which is fitted with alignment between the fixture and specimen

a variable size aperture. This apparatus is remains consistent from test to test.
a ttached directly to the specimen support fixture
as shown in Fig. 3. The support fixture imposes The material selected for this research is
clamp-like boundary Conditions along each edge of hlastelloy X. Hastelloy X is a nickel-chromum-
a rectangular specimen (details on the support iron-molyboenum alloy that possesses a
fixture are discussed later In the paper), combination of oxidation resistance and high
Insulation shields enclose both sioes of the strength at temperatures in excess of 2200"F. It
specimen, in order to reduce the amount of heat was selected for this test program primarily for
transfer due to free convection. its high temperature characteristics, but also

because it is widely used in the research
Displacement and temperature data are community in conjunction with high temperature

obtained using a PC based data acquisition constitutive modeling and testing.
system, which also serves as the quartz lamp
controller. A single DC-operated LVOT, which can The Hastelloy X material was obtained in
be positioned at various radial locations, is plate form in no inal thicknesses of 1/16 in, 1/3
used to measure displacements. A coupling tang in, and 1/4 in, and was used to fabricate a total

enables dual measurement of displacement with the of 18 specimens (6 of each thickness). The
LVDT and a precision dial indicator. Measurement material was received in an annealed condition
of the in-plane temperature field and transverse specified by ASIM 5536 and used without further
temperature gradients are made using K-type 30 heat treatment. No micrographic studies were
gage thermocouples intrinsically mounted to the performed to investigate the variations in grain
plate specimen. The specimens for this phase of Structure or size that existed between the
testing were made of 6061-16 aluminum. This different plate thicknesses.
material was selected because it exhibits
inelastic deformation at relatively low All specimens were machined to finished
temperatures (<500F). dimensions of 13 x 13 in. corresponding to the

outer edge of support fixture. Therefore, taking
Testing to date has not yielded a high into account the support fixture clamping zone,

enough input energy to produce a significant the effective plate dimensions were reduced to 10
specimen temperature rise. In addition, the x 10 in. Each specimen was hand sanded with 1320
current aperture system has failed to generate a grit sand paper and glass bead blasted to produce
well defined target zone. Therefore, the orifice a low luster finish. No other special Surface

plate is being refitted with a lens system that treatment, Such as anodizing, blueing, or the
will serve to both condense available heat energy like, was performed to enhance the thermophysical

and focus it on the target spot. properties of the material.

Hioh Energy Testing An integrated instrumentation package was
used to simultaneously measure the displacement

The high energy, rapid heating experiments and temperature fields of a plate specimen
made use of an electric discharge 15 KW undergoing laser irradiation. The primary
continuous-wave carbon dioxide laser operating at instrumentation included: 1) LVDT's (Linear
a wave length of 10.6 um with a flat-top beam Variable Differential Transformers) for measuring
profile, to irradiate the plate specimens. The displacement; 2) thermocouples for measuring
test apparatus was placed in a nitrogen flood box temperature; 3) a radiant pyrometer for measuring
during irradiation in order to prevent oxidation surface brightness temperature; and 4) strain

m4m LI



gages for measuring the plate vibration A 3S0 o strain gage was used to measure the
frequency. A 12 bit, high speed data system dynamic response of the s;ecimen resulting from
(called the PCM) was used to Convert the analog the rapid heating. The strain gage was mounted
output of these transducers and thermocouples to parallel with the edge of the plate specimen
an equivalent binary fore at an approximate rate approximately 2.5 in off center. Since vibration
of 1.2 KHz. Once converted, the data were stored frequencies and not $train magnitudes were of
an magnetic tape for subsequent conversion to interest, the output of the strain gage was
engineering units and any other post- displayed on 4 visicorder strip Chart recorder.
processing. Described below is a more detailed
discussion on the implementation of the various A total of 4 laser/structure interaction
pieces of instrumentation, experiments have been conducted thus far,

representing approximately one third of those
A total of 11 DC-operated LVDT's were used planned under this phase of testing. All 4 tests

to sense the out-of-plane displacements resulting utilized the same 1/16 in thick plate specimen
from the laser deposition. The outputs of the with heat flux and exposure time serving as input
LVT's were scaled via the data system, to detect test variables (as shown in lable 1) and
displacements as small as 0.0001 in, at a displacement and temperature fields serving as
published maximum frequency response of IS hz. measured or output auantities. Before testing,The LVD7's were arranged in a sylmetritc pattern the laser beam was characterized in terms of the

around the heat zone and were rigidly mounted to amount of energy being delivered on target, in
a Support system which was positioned directly addition to the beam width and density. Target
behind the specimen, as Shown in Fig.'s Sa and energy was measured by reflecting approximately
Sb. in addition. 2 LVOT's were used to monitor 7% of the total available energy into a torpedo
relative movement between the LVOI support system calorimeter. The beam profile was determined by
and plate fixture. ablation of plexiglass samples as shown In Fig.

6. By measuring the plexiglass burn patterns,
Measurement of the in-plane temperature both the laser target area and beam uniformity in

field, through-thiCkness temperature gradients, the radial direction can be found. For this
and non-contact plate surface temperatures, were experiment, the laser contact spot was found to
made using 21 K-type 30 gage thermocouples. The be ellipsoioal, having major and minor axis
thermocouples were concentrated in a I in length equal to 0.5235 in and 0.5276 in,
diameter circle around thC heat zone and were respectively (this Is a result of the beam
arranged in a symetric pattern for measuring the striking the specimen at a 10' incidence angle in
in-plane temperature field. The through- order to prevent energy feedback through thethickness temperature gradients were measured laser pattern).

using thermocouples positioned at the same
cOordinate locations, but mounted on the front Figures 7 through 10 show typical output of
and back of the specimen. All thermocouples were the thermocouples and LVDT's at discrete
intrinsically mounted to the specimen via a locations during laser irradiation (with and
welding operation with the exception of 4 without time averaging). In particular, Figs. 7
thermocouples. These thermocouples were bead and 9 show raw data (in engineering units) where
welded junctions which were mounted approximately there is an apparent electrical noise problem. A
0.050 in from the surface of the plate. All power spectrum density analysis indicates that 60
thermocouples mounted on the front surface of the HZ and its harmonics, were present in the data.
plate (the heat side) were Inconel 600 sheeted to This resulted in peak-to-peak variations of
withstand the extreme temperatures, whereas the approximately 44"F and 0.0074 in for temperature
thermocouples mounted on the back side of the and displacement, respectively. Future tests
specimen were insulated using high temperature will incorporate real time analog filtering
glass braid. The thermocouples were connected to and/or post test digital filtering, in order to
the data system via a 150"F reference oven, which resolve this problem. Figures 8 and 10 present
for this test was left open to room the same data as discussed above, except that
temperature. For thermocouple input, the data time averaging has been used.
system was scaled to record voltage changes on
the order of 0.03 mY, which corresponds to a No comment is made about the validity of the
measured temperature resolution of approximately data, except to note the following. First, the
1.4'F. Thus, taking into account the NBS wire typical temperature profile shown in Figs. 7 and
error specification and the above resolution, a 8, indicates the thermocouple did not respond
maximum temperature uncertainty between 5.36"F during the laser shot. This should not be
and 1.SF can be expected, interpreted as thermocouple lag. For

intrinsically mounted thermocouples, one would
A germanium radiation pyrometer was used to expect a response time in the msec time frame.

obtain relative measurements of the plate surface It Is presumed that the laser firing sequence
brigntness temperature. The pyrometer is a high caused a voltge shift and saturated the A to 0
speed transducer, having a peak spectral response system low. Second, a target zone temperature of
at a wavelength of 1.Sxm and an effective BOO-1000'f was generally encountered, which was
temperature range between gOO'F and 5400"F within far below the 1500-2000'F temperature expected.
a target area of approximately 0.0491 in

2
. The Lastly, Figs. 9 and 10 show a typical LVDT data

pyrometer was aligned to record temperatures that indicates a drastic displacement reversal
within the laser Irradiated spot diameter in during irradiation. That is, the specimen
Conjunction with a thermocouple. The output of initially deforms in the positive direction
the pyrometer was fed into the data system for (towards the heat Source) and then reverse
use later in developing an appropriate transfer itself, going through a neutral point to assume a
function for the slower responding thermocouples, negative displacement. The authors are awaiting3 photographic confirmation, via high speed
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I 1) Me have reason to suspect that both the

caeras. to see if this phenomena actually LVDT's mWd thermocouples are giving spuriOuS
exists, results for short time spans. We are currently

The primary objective of this first phase of 
yng this problem.

testing was to establish a baseline experimental 2) The mowel assumes that the input source
procedure which would verify analytical models Commences Instantaneously, whereas the laser
currently under construction. To this end. that output indicates an approximately linear rise
objective has been met, with the exception of the time of .003 sec. We are modifying the model to

following problem areas (which are currently account for this.
being corrected): 1) energizing and/or firing the
laser &aversely affected the measured data, both 3) Initial indications are that the input heat
with noise and voltage shifts; 2) there was no source is not spatially homogeneous, thus
explicit indication of when the laser power was producing a temperature field which is not axi-
on and off the target area; 3) the nitrogen flood symmetric.
box did not provide an inert environment and ade
phogographic documentation difficult; 4) the 4) Currently, we can measure only the amount
thermocouple reference junction needed to be of heat energy being delivered on target, future
below room temperature; 5) a constant aperture tests will try to measure the amount of energy
setting on the video and high speed Cameras made being reflected by the specimen.
photograhic interpretation difficult AS the

specimen heated up; 6) the pyrometer data was 5) The very rapid heat input may cause thermal
Inappropriately scaled; and 7) there was Apparent waves which are not predicted by our parabolic
movement of the LVOT support stand during laser heat equation. We are thus considering various
deposition, hyperbolic forms of the heat equation.

Comparison of Model to Experiment 6) The computer code currently requires one

CPU day on a VAX 8880 (3 real time days) to
Limited results have been obtained with the produce the first 0.08 sec of predicted

model for Comparison to the experimental results response. We are attempting to improve the
given in the previous section. Experimental computational efficiency of the model so that
constants for Bodner's model have been obtained longer term predictions can be obtained.
for Hastelloy X-,as shown in Table 2. The model
has been used to predict the response of the
squt plate of 1/16 in thickness with spatially Conclusion

and tfmporally constant heat input of 12.2
Stu/in sec over a 0.25 in radius spot at the It is obvious that the experimental results
center of the plate. Predicted temperature at are not in agreement with the model at this point
the front center of the plate versus time is in time. While the authors cannot say with
shown for the first 0.08 sec in Fig. 11, where it certainty what the causes for discrepancy are, it
can be seen that the plate is heated rapidly to a is the general feeling here that the experimental

temperature of about 1300"f. This heating is program needs to be refined considerably before a
sufficient to cause a center displacement of critical comparison of the model and experiments
approximately 0.02 in (about 33% of the plate will yield fruitful results. We are Currently
thickness), as Shown in Fig. 12. The making progress in both directions.
displacement field in turn produces radial and
hoop stresses near the plate center which rapidly Acknowledgement
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Table 1. Laser Parameters for the Specified Tests

lest Shot Incident seam Heat I Shot
Number Energy (KW) Area (cm2) Flux (KW/cm

2
) Duration (sec)

1 49540 1.4 2.4 1 5.02 49541 2.8 1.4 2 3.03 49546 4.? 1.4 3 1.0
4 49550 7.0 1.4 5 1.2-1.6

I Table 2. Bodner-Partom Model Material Constants for hastelloy X

Constant Temperature

Row, leTmp 1200'F 1600F
n 1.0 1.0 1.0 0.75
0
0 10(4 10(4 10(4 1014

m, - MPa
"1 

(KS-1) 0.02 (1.38E.4) 0.1 (6.89E-4) 0.1 (6.89E-4)

I 2 - MPa"1 
(KSI 1 ) 1.8 (1.24E-2) 2.4 (1.65E-2) 2.4 (1.65E-2)

M3 -MPe "1 
(KSI 1

) 0.001 (6.e9E-6) 0.01 (6.e9E-5) 0.01 (6.89E-5)
z0 - MPa (KSI) 1200 (1.74E5) 1550 (2.248(5) 600 (8.7(4)
21 - MPa (KSI) 2000 (2.9(5) 2000 (2.9E5) 2000 (2.9(5)

Z2 - MPg (KSI) 1200 (1.74E5) 1550 (2.248E5) 600 (8.7E4)
23 - MPa (KSI) 1200 (1.74(S) 800 (1.16E5) S00 (7.25(4)
Al - sec

"1  
0 6.5t-7 6.5E-7

A2 - sec "1  
0 6.S-7 6.5[-7

r, 0.98 0.98 0.98 0.98
r2 0.98 0.98 0.98 0.98

E - NPa (KSI) 2.07E6 (3.002E7) 1.61E6 (2.335E7) 1.37E6 (1.987E7)
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STRUCTUMA4 ANALYSIS

2

ADD THE~rAL ANALYSIS

Fig. I Flowchart of Solution Algorithm Fig. 2 Mesh Diagram of the Thermal and

Ia) Test Frame Assembly View b) Test Frame -Side View

Fig. 3 Low Input Heat Energy Test Frame



a) Support Structure -Side View b) Support Structure -Front View

Fig. 4 Plate Specimen Support Fixture

a) LVDT Support Stand -Top View b) LVDT Support Stand -Side View

Fia. 5 LVDT Support Stand Positioned Behind the Specimen

a) Befor cAblation b) Alter Ablation

Fig. 6 Plexialass Sanples Used to M~easure the Laser Beam
Width and Density
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